This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The major objective of this project is to study the role of mitochondria in oxysterol-induced apoptosis of human lymphoblastic leukemia cells. Oxysterols represent a class of potent inducers of apoptosis in various cell types, particularly leukemic lymphoid cells. Oxysterols also act as powerful transcriptional regulators of genes involved in cholesterol biosynthesis, cell growth and apoptosis. Although the molecular basis of oxysterol-induced apoptosis of lymphoid cells remains unknown, some studies have suggested that oxysterol induction of apoptosis is mediated by reactive oxygen species generation. Results obtained in the previous funding cycle show that oxysterol treatment of CEM cells induces a decrease in ATP levels and loss of mitochondrial membrane potential. This project will test the hypothesis that ROS damage particularly to mitochondrial DNA plays a role in oxysterol-induced apoptosis of human leukemia cells. Our hypothesis predicts that oxidative damage to mitochondrial DNA can lead to mitochondrial dysfunction and induction of apoptosis. To test this hypothesis we will: 1) determine whether the formation and repair of oxidative damage to nuclear and mitochondrial DNA are higher in oxysterol sensitive human lymphoid cells than in oxysterol-resistant cells after exposure to oxysterols, 2) determine mitochondrial function and dysfunction in oxysterol-sensitive and resistant human lymphoid cells after exposure to oxysterols, and 3) determine the expression profile of genes involved in oxidative stress, DNA repair and apoptosis during oxysterol-induced apoptosis of lymphoid cells. This project will assist in laying the foundation for a research project directed towards the understanding of the role of mitochondria in the process of apoptosis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Centers in Minority Institutions Award (G12)
Project #
2G12RR003035-24
Application #
7959232
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
2009-09-15
Project End
2010-06-30
Budget Start
2009-09-15
Budget End
2010-06-30
Support Year
24
Fiscal Year
2009
Total Cost
$93,585
Indirect Cost
Name
Universidad Central Del Caribe
Department
Type
Other Domestic Higher Education
DUNS #
090534694
City
Bayamon
State
PR
Country
United States
Zip Code
00960
Karl, Anett; Agte, Silke; Zayas-Santiago, Astrid et al. (2018) Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Exp Eye Res 173:160-178
Agte, Silke; Savvinov, Alexey; Karl, Anett et al. (2018) Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus): Analysis of retinal light transmission. Exp Eye Res 173:91-108
Suárez-Arroyo, Ivette J; Loperena-Alvarez, Yaliz; Rosario-Acevedo, Raysa et al. (2017) Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer. Medicines (Basel) 4:
Maldonado-Martínez, Gerónimo; Hunter-Mellado, Robert F; Fernández-Santos, Diana et al. (2016) Persistent HIV Viremia: Description of a Cohort of HIV Infected Individuals with ART Failure in Puerto Rico. Int J Environ Res Public Health 13:ijerph13010050
Zueva, Lidia; Golubeva, Tatiana; Korneeva, Elena et al. (2016) Foveolar Müller Cells of the Pied Flycatcher: Morphology and Distribution of Intermediate Filaments Regarding Cell Transparency. Microsc Microanal 22:379-86
Martinez, Namyr A; Ayala, Alondra M; Martinez, Magdiel et al. (2016) Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells. J Biol Chem 291:12208-22
de la Parra, Columba; Castillo-Pichardo, Linette; Cruz-Collazo, Ailed et al. (2016) Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutr Cancer 68:154-64
Suárez-Arroyo, Ivette J; Rios-Fuller, Tiffany J; Feliz-Mosquea, Yismeilin R et al. (2016) Ganoderma lucidum Combined with the EGFR Tyrosine Kinase Inhibitor, Erlotinib Synergize to Reduce Inflammatory Breast Cancer Progression. J Cancer 7:500-11
Suárez-Arroyo, Ivette J; Feliz-Mosquea, Yismeilin R; Pérez-Laspiur, Juliana et al. (2016) The proteome signature of the inflammatory breast cancer plasma membrane identifies novel molecular markers of disease. Am J Cancer Res 6:1720-40
Pasaoglu, Taliha; Schikorski, Thomas (2016) Presynaptic size of associational/commissural CA3 synapses is controlled by fibroblast growth factor 22 in adult mice. Hippocampus 26:151-60

Showing the most recent 10 out of 167 publications