This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A Molecular Structure and Modeling Core laboratory will be established to provide technical services to support faculty researchers involved in cancer research and drug design at Xavier University. Drug design methods use molecular structure information and modeling methods to determine structure patterns among active and inactive compounds, identify and compare potential active sites, and screen databases to identify new leads. X-ray crystallography provides structure coordinates for druglike, organic compounds and small peptides. The goal of this core laboratory is to provide small molecule X-ray crystallographic services as well as to support ligand-based and structure-based drug design projects at any stage. The long term goal is to develop resources in order to enhance cancer related biomedical research capability at Xavier University. To achieve this goal, the Molecular Strcuture and Modeling Core Laboratory has set the following specific aims: 1. To recruit and provide salary support for a Ph.D. level scientist to provide molecular modeling services and training in support of faculty research projects, 2. To enhance and upgrade existing molecular modeling equipment and software, 3. To purchase a state-of-the-art X-ray diffractometer, and 4. To provide support and maintenance costs for existing and new equipment. The Molecular Structure and Modeling Core will be managed by a faculty manager and will be staffed by a full-time molecular modelor with extensive experience in both ligand-based and structure-based molecular modeling. Operation of the Core lab will follow guidelines specified in the Standard Operating Procedure (SOP) that will be revised and improved as the Core evolves.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Centers in Minority Institutions Award (G12)
Project #
5G12RR026260-03
Application #
8357085
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
2011-08-01
Project End
2012-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
3
Fiscal Year
2011
Total Cost
$152,277
Indirect Cost
Name
Xavier University of Louisiana
Department
Type
Other Domestic Higher Education
DUNS #
020857876
City
New Orleans
State
LA
Country
United States
Zip Code
70125
Graves, Richard A; Ledet, Grace; Nation, Cedric A et al. (2015) An ultra-high performance chromatographic method for the determination of artemisinin. Drug Dev Ind Pharm 41:819-24
Bratton, Melyssa R; Martin, Elizabeth C; Elliott, Steven et al. (2015) Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol 150:17-23
Dougherty, Casey A; Furgal, Joseph C; van Dongen, Mallory A et al. (2014) Isolation and characterization of precise dye/dendrimer ratios. Chemistry 20:4638-45
Nilov, Denis; Kucheryavy, Pavel; Walker, Verina et al. (2014) Synthesis of 5-Substituted Derivatives of Isophthalic Acid as Non-Polymeric Amphiphilic Coating for Metal Oxide Nanoparticles. Tetrahedron Lett 55:5078-5081
Strong, Amy L; Ohlstein, Jason F; Jiang, Quan et al. (2014) Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms. Stem Cell Res Ther 5:105
Ponnapakam, Adharsh P; Liu, Jiawang; Bhinge, Kaustubh N et al. (2014) 3-Ketone-4,6-diene ceramide analogs exclusively induce apoptosis in chemo-resistant cancer cells. Bioorg Med Chem 22:1412-20
McFerrin, Harris E; Olson, Scott D; Gutschow, Miriam V et al. (2014) Rapidly self-renewing human multipotent marrow stromal cells (hMSC) express sialyl Lewis X and actively adhere to arterial endothelium in a chick embryo model system. PLoS One 9:e105411
Ledet, Grace; Pamujula, Sarala; Walker, Valencia et al. (2014) Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery. Drug Dev Ind Pharm 40:370-9
Williams, Christopher C; Singleton, Brittany A; Llopis, Shawn D et al. (2013) Metformin induces a senescence-associated gene signature in breast cancer cells. J Health Care Poor Underserved 24:93-103
Abboud, Elizabeth R; Shelby, Bryan D; Angelova, Magdalena et al. (2013) Kaposi sarcoma-associated herpesvirus g protein-coupled receptor enhances endothelial cell survival in part by upregulation of bcl-2. Ochsner J 13:66-75

Showing the most recent 10 out of 63 publications