Alcoholism and alcohol dependence are important contributors to health problems facing US veterans. Alcoholism is a multigenic and polygenic disease: that is, many genes contribute modest effects to enhance risk or protection. Together, genetic factors appear to contribute approximately half of an individual's total risk, with the other half coming from """"""""environmental"""""""" factors, such as socioeconomic, family, and peer attributes. We can now only predict that an individual may be at an increased statistical risk based on his or her genetic relationships to alcoholics. One important goal is to be able to predict actual individual differences in risk, base on knowledge about specific genes. There is currently no animal model that captures the full range of alcohol withdrawal symptoms. During 34 years of continuous funding, this Merit Review Program has established and studied a number of genetic animal models for aspects of alcohol (ethanol) dependence, and has contributed to the identification of the first gene influencing a drug-dependence related behavioral trait, Mpdz, influencing ethanol withdrawal seizures. Because of the high degree of mouse/human genetic homology (approx. 85%), genes mapped in mice are able to predict human gene locations. However, to date, nearly all gene mapping efforts for ethanol dependence by any group have focused on either withdrawal seizures or alcohol preference drinking. Beginning in 1999, we began studies in several behavioral domains (motor impairment, anxiety, activity, increased drinking after withdrawal) to start mapping the landscape of withdrawal more broadly. An important goal is to identify the genes responsible for increased risk for and protection against additional symptoms of alcohol dependence. In filling this gap, this project will (1) develop more comprehensive assessment assays to describe ethanol withdrawal effects across multiple behaviors, including pain sensitivity, anhedonia/depression, learning &memory /cognitive impairment, thermal disruption, and reinforcement;(2) elucidate the time course of each of these withdrawal effects;(3) use brain microinjection to test whether a specific neural circuit underlies one withdrawal behavior, exacerbated drinking;(4) sequence the exomes of the most widely used genetic animal model for ethanol dependence syndromes, the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) mouse lines and their Controls (WSC), to identify potentially informative sequence variants (SNVs);(5) using generational strategies, including an F2 cross of WSP x WSR, identify SNVs that segregate with various withdrawal symptoms;and (6) continue to support the WSP, WSR, WSC, and inbred iWSP and iWSR mouse lines. These studies, through identification of gene targets that are affected by alcohol dependence and withdrawal symptoms, will ultimately directly suggest possible pharmacotherapies for the problems underlying alcoholism.

Public Health Relevance

The VA's leadership in substance abuse, a VA Research Priority Area, and in particular alcohol research is well known. Alcohol-related disorders have consistently been diagnosed in a large proportion of VA hospital patients. Female and male veterans also have much higher prevalence rates than the general population for Alcohol Dependence (*Davis et al, 2003). Veterans diagnosed with Substance Use Disorders (SUDs), other than nicotine dependence, are increasing in both absolute numbers and as a percentage of the total VA patient population - from 270,991 (6.1%) in FY02 to 461,927 (8.3%) in FY10 (VA QUERI Fact Sheet, April 2012). About 9% of VA primary care patients screen positive for alcohol misuse (VA QUERI Update, June 2012). In a review of more than 456,000 Iraq and Afghanistan Veterans who enrolled in VA health care between 2002 and 2009, about 1 in 10 Veterans had an alcohol use disorder and 1 in 20 had a drug use disorder (VA Research Currents JULY/AUGUST 2011). [*] Davis TM, et al. (2003) Psychiatr Serv 54:214-8.

National Institute of Health (NIH)
Veterans Affairs (VA)
Non-HHS Research Projects (I01)
Project #
Application #
Study Section
Neurobiology A (NURA)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Portland VA Medical Center
United States
Zip Code
Gavin, David P; Hashimoto, Joel G; Lazar, Nathan H et al. (2018) Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Front Genet 9:346
Purohit, Kush; Parekh, Puja K; Kern, Joseph et al. (2018) Pharmacogenetic Manipulation of the Nucleus Accumbens Alters Binge-Like Alcohol Drinking in Mice. Alcohol Clin Exp Res 42:879-888
Metten, Pamela; Schlumbohm, Jason P; Huang, Lawrence C et al. (2018) An alcohol withdrawal test battery measuring multiple behavioral symptoms in mice. Alcohol 68:19-35
Crabbe, John C; Ozburn, Angela R; Metten, Pamela et al. (2017) High Drinking in the Dark (HDID) mice are sensitive to the effects of some clinically relevant drugs to reduce binge-like drinking. Pharmacol Biochem Behav 160:55-62
Jensen, Jeremiah P; Nipper, Michelle A; Helms, Melinda L et al. (2017) Ethanol withdrawal-induced dysregulation of neurosteroid levels in plasma, cortex, and hippocampus in genetic animal models of high and low withdrawal. Psychopharmacology (Berl) 234:2793-2811
Greenberg, Gian D; Phillips, Tamara J; Crabbe, John C (2016) Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity. Physiol Behav 165:257-66
Greenberg, G D; Huang, L C; Spence, S E et al. (2016) Nest building is a novel method for indexing severity of alcohol withdrawal in mice. Behav Brain Res 302:182-90
Crabbe, John C; Schlumbohm, Jason P; Hack, Wyatt et al. (2016) Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking. Alcohol 52:25-32
Cozzoli, Debra K; Courson, Justin; Rostock, Charlotte et al. (2016) Protein Kinase C Epsilon Activity in the Nucleus Accumbens and Central Nucleus of the Amygdala Mediates Binge Alcohol Consumption. Biol Psychiatry 79:443-51
Crabbe, John C (2016) Reproducibility of Experiments with Laboratory Animals: What Should We Do Now? Alcohol Clin Exp Res 40:2305-2308

Showing the most recent 10 out of 25 publications