Prostate cancer is listed as a primary diagnosis for approximately 16% of older male VHA users, and contributes significantly to morbidity and mortality rates in these individuals. The majority of VA patients with metastatic prostate cancer, similar to most non-VA patients in the United States, receives hormonal treatment which is initially effective, but frequently fail indicative of the development of castration resistant prostate cancer (CRPC). The treatment options for patients who fail hormonal therapy are limited, despite numerous clinical trials testing multiple drugs. Hence, our laboratory has undertaken the innovative overall strategy of identifying therapeutic targets that can prevent prostate cancer progression to castration resistance, rather than trying to cure it after it has already developed. Studies performed during the previous funding period, which resulted in 14 publications in related topics, contributed to understanding the importance of the cell survival regulator Akt in prostate cancer development and progression. While a number of Akt inhibitors have been developed commercially, their utility has been compromised by high levels of toxicity when used in human patients, caused by the induction of apoptosis in normal tissue including non-tumor prostate regions. As a result, a goal of the project was to identify natural antagonists of Akt that selectively counteract the effects of the increase in Akt phosphorylation in the tumor without affecting basal levels of Akt activation in other cells. Two of our recent publications demonstrate that Filamin A (FlnA) may be one such protein. In vitro studies showed that FlnA localization to the nucleus resulted in castration sensitive growth of prostate cancer cells which was mediated by antagonism of Akt phosphorylation and its downstream effectors. FlnA nuclear localization is regulated by its phosphorylation, which in turn is regulated by PKA activity. The effects of FlnA nuclear localization are likely caused by its interaction with the androgen receptor (AR), a nuclear steroid receptor mediating the effects of the androgens on cell mechanisms. Therefore, in the current application, we will investigate the role nuclear FlnA plays in regulating castration sensitive cell behavior. We hypothesize that FlnA counters the effects of Akt phosphorylation and its downstream effectors, and that its localization is in turn regulated by its phosphorylation. The following aims will test this hypothesis.
Specific Aim 1 : To test the hypothesis that FlnA 16-24 nuclear localization sensitizes prostate cancer cells to androgen withdrawal by preventing the effects of Akt on AR activity and cell survival. We will determine whether FlnA16-24 induces sensitivity to androgen blockade in CRPC cells by antagonizing an Akt- dependent signaling pathway and preventing AR/TIF2 interactions. We will also investigate whether nuclear localization of FlnA 16-24 induces apoptosis by repressing NF-kB activation and stimulating AR-dependent p21Cip1 transcription.
Specific Aim 2 : To test the hypothesis that FlnA phosphorylation is a key factor responsible for preventing FlnA nuclear localization in castrate resistant prostate cancer. We will examine whether FlnA phosphorylation prevents FlnA nuclear localization and causes castration resistance in prostate cancer cell lines expressing a functional AR. We will also determine whether inhibition of FlnA phosphorylation prevent the development of castration resistance in a mouse model of recurrent prostate cancer.
Specific Aim 3 : To test the hypothesis that increased FlnA phosphorylation and decreased FlnA nuclear localization predict time to treatment failure in VA patients with metastatic prostate cancer on androgen withdrawal therapy who did not undergo radical prostatectomy. We have identified patients within the VA Northern California System who presented with metastatic prostate cancer. We will determine in biopsies of the prostates of these patients the localization of Filamin A, FlnA phosphorylation, AR levels and Akt phosphorylation and determine whether they respond to androgen withdrawal therapy.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX000400-02
Application #
8195837
Study Section
Oncology A (ONCA)
Project Start
2010-04-01
Project End
2014-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
2
Fiscal Year
2011
Total Cost
Indirect Cost
Name
VA Northern California Health Care System
Department
Type
DUNS #
127349889
City
Mather
State
CA
Country
United States
Zip Code
95655
D'Abronzo, Leandro S; Ghosh, Paramita M (2018) eIF4E Phosphorylation in Prostate Cancer. Neoplasia 20:563-573
Shi, Yun; Shu, Zhen-Ju; Wang, Hanzhou et al. (2018) Altered expression of hepatic ?-adrenergic receptors in aging rats: implications for age-related metabolic dysfunction in liver. Am J Physiol Regul Integr Comp Physiol 314:R574-R583
Shih, Tsung-Chieh; Liu, Ruiwu; Wu, Chun-Te et al. (2018) Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clin Cancer Res 24:4319-4331
Baek, Han Bit; Lombard, Alan P; Libertini, Stephen J et al. (2018) XPO1 inhibition by selinexor induces potent cytotoxicity against high grade bladder malignancies. Oncotarget 9:34567-34581
D'Abronzo, Leandro S; Pan, Chong-Xian; Ghosh, Paramita M (2018) Evaluation of Protein Levels of the Receptor Tyrosine Kinase ErbB3 in Serum. Methods Mol Biol 1655:319-334
D'Abronzo, L S; Bose, S; Crapuchettes, M E et al. (2017) The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: implications for the use of mTOR inhibitors in advanced prostate cancer. Oncogene 36:6359-6373
Kent, Michael S; Zwingenberger, Allison; Westropp, Jodi L et al. (2017) MicroRNA profiling of dogs with transitional cell carcinoma of the bladder using blood and urine samples. BMC Vet Res 13:339
Shih, Tsung-Chieh; Liu, Ruiwu; Fung, Gabriel et al. (2017) A Novel Galectin-1 Inhibitor Discovered through One-Bead Two-Compound Library Potentiates the Antitumor Effects of Paclitaxel in vivo. Mol Cancer Ther 16:1212-1223
Lombard, Alan P; Mooso, Benjamin A; Libertini, Stephen J et al. (2016) miR-148a dependent apoptosis of bladder cancer cells is mediated in part by the epigenetic modifier DNMT1. Mol Carcinog 55:757-67
Kiss, Zsofia; Ghosh, Paramita M (2016) WOMEN IN CANCER THEMATIC REVIEW: Circadian rhythmicity and the influence of 'clock' genes on prostate cancer. Endocr Relat Cancer 23:T123-T134

Showing the most recent 10 out of 13 publications