The overall goal of this proposal is to identify the mechanisms by which IFN1 and IL-17 act in a coordinated fashion to initiate the development of autoantibody (autoAb)-forming B cells in both human and mouse that develop systemic lupus erythematosus (lupus or SLE). Both IL-17R and IFN1R signaling have been implicated in the formation of spontaneous germinal centers (GCs) in the BXD2 mouse model of lupus through analysis of IFN1R-deficient and IL-17R-deficient BXD2 mice. There are high numbers of plasmacytoid DCs in the marginal sinus of the BXD2 mice that produce locally high levels of IFN1. IFN1 appears to influence the formation of GCs by promoting the migration of a population of CD21hiIgMhiCD23hi B cells from the marginal zone (MZ) to the follicle (FO). These B cells were referred to as CD23hiAPChi B cells as they have a very high capacity for antigen (Ag) presentation and the ability to induce a much stronger TH-17 polarization response than the conventional FO B cells. Parallel analyses indicate that IL-17 promotes the formation and stabilization of the GCs in the BXD2 mice through upregulation of regulators of G-protein signaling (Rgs)13 and Rgs16 in the B cells, which then promote the retention of APChi B cells in the FO area. We hypothesize that IFNa facilitates the release of the CD23hiAPChi B cells from the MZ and that IL-17 then localizes these cells in the FO where the CD4 T cells reside. As these CD23hiAPChi B cells have increased APC and costimulatory functions, they promote the generation/maintenance of TH-17 cells and the formation of spontaneous GCs. Three major questions will be addressed: (1) Does the IFN1-induced influx of the CD23hiAPChi B cells initiate the development of GCs in BXD2 mice? (2) Do the CD23hiAPChi B cells respond to IL-17 and promote polarization of TH-17 cells leading to the production of autoAbs in the BXD2 mice? And (3) Can IFNa and IL-17 regulate the migration behavior of APChi B cells in lupus patients? We will analyze Ag capture, transportation and presentation by APChi B cells to CD4 T cells in vivo using confocal microscopy and FACS analysis. The ability of IL-17 and IFNa to regulate chemotaxis will be determined in vitro, and confirmed in vivo by analysis of homing of GFP-positive APChi B cells using B cells from BXD2-Il-17r-/-, BXD2-Ifnar-/-, BXD2-Rgs13-/- and BXD2-Rgs16-/- mice. The clinical relevance of this model of the development of autoimmunity will be assessed by that analysis of B cells obtained from the peripheral blood of lupus patients for the analysis of the effects of IFN1 and IL-17 on the development and migration of APChi B cells. SIGNIFICANCE: These studies should identify critical migratory signals and upstream mediators that facilitate the development of an autoimmune circuit that leads to the production of high affinity pathogenic autoAbs. Thus, they have the potential to identify novel candidate therapeutic targets and to suggest more effective therapeutic interventions in autoAb-mediated autoimmune diseases.

Public Health Relevance

Short Narrative Autoantibodies play a critical role in the development of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. It has been known for some time that both interferon-1 and interleukin-17 play a role in the development of autoimmunity. In this project, we propose to test a model that suggests how these agents can coordinate the migration of lymphocytes that have trapped self-antigens in the spleen, thereby promoting the interactions of the lymphocytes that are critical to the production of pathogenic autoantibodies. We will test this model using state-of-the-art in vivo techniques in a mouse model and using peripheral blood from lupus patients. The results will help to identify novel therapeutic interventions as well as suggesting better approaches to the use of currently available therapies.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX000600-02
Application #
7904905
Study Section
Immunology A (IMMA)
Project Start
2009-10-01
Project End
2013-09-30
Budget Start
2010-10-01
Budget End
2011-09-30
Support Year
2
Fiscal Year
2011
Total Cost
Indirect Cost
Name
Birmingham VA Medical Center
Department
Type
DUNS #
082140880
City
Birmingham
State
AL
Country
United States
Zip Code
35233
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2018) Cutting Edge: Intracellular IFN-? and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. J Immunol 201:2203-2208
Mountz, John D (2018) Editorial: STATus of STAT3 in Psoriatic Arthritis. Arthritis Rheumatol 70:801-804
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2017) Cutting Edge: Endogenous IFN-? Regulates Survival and Development of Transitional B Cells. J Immunol 199:2618-2623
Hamilton, Jennie A; Li, Jun; Wu, Qi et al. (2015) General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol 194:5022-34
Ding, Yanna; Mountz, John D; Hsu, Hui-Chen (2015) Identification of follicular T helper cells in tissue sections. Methods Mol Biol 1291:13-25
Li, Hao; Fu, Yang-Xin; Wu, Qi et al. (2015) Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus. J Clin Invest 125:2877-90
Ding, Yanna; Li, Jun; Yang, PingAr et al. (2014) Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice. Arthritis Rheumatol 66:2601-12
Li, Jun; Hsu, Hui-Chen; Ding, Yana et al. (2014) Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 66:2368-79
Li, Hao; Hsu, Hui-Chen; Wu, Qi et al. (2014) IL-23 promotes TCR-mediated negative selection of thymocytes through the upregulation of IL-23 receptor and ROR?t. Nat Commun 5:4259
Li, Hao; Wu, Qi; Li, Jun et al. (2013) Cutting Edge: defective follicular exclusion of apoptotic antigens due to marginal zone macrophage defects in autoimmune BXD2 mice. J Immunol 190:4465-9

Showing the most recent 10 out of 24 publications