The storage and mobilization of lipids are fundamental cellular processes. In mammals, adipose tissue functions as a specialized lipid buffer that stores excess energy as triglyceride for systemic mobilization as free fatty acids (FFA). Nonetheless, virtually all cells have the ability to store and mobilize FFA;indeed, for some tissues FFA can provide the major source of metabolic energy. Excessive FFA can disrupt cellular function in a process that has been termed 'lipotoxicity,"""""""" which is thought to be a major means by which obesity contributes to diabetes and cardiovascular disease. In theory, lipotoxicity can be brought about by excessive systemic supply of FFA from adipose tissue, or by an imbalance in FFA storage and mobilization in peripheral tissues. Thus, a mechanistic understanding of how cells assimilate, mobilize and channel FFA is an important biological question with broad implications for health and disease. Our long term goal is to provide a mechanistic understanding of cellular lipolysis so as to identify novel points of therapeutic intervention for the treatment of obesity and diabetes. We hypothesize that intracellular lipolysis in muscle is controlled by the orderly trafficking of specific proteins at the surface of specialized lipid droplets. This work will define the intracellular sites where lipolysis occurs, test specific models of dynamic protein- protein interactions, and determine the functional impact of those interactions in vitro and in vivo.

Public Health Relevance

The storage and mobilization of lipids are fundamental cellular processes that affect health and disease. The storage and breakdown of fat is particularly important in muscle, and can greatly affect the sensitivity of these cells to insulin. This project investigates how muscle cells balance lipid supply with oxidation. The long term goal is to identify novel points of therapeutic intervention for the treatment of obesity and diabetes.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX001335-03
Application #
8598050
Study Section
Endocriniology A (ENDA)
Project Start
2011-10-01
Project End
2015-09-30
Budget Start
2013-10-01
Budget End
2014-09-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
John D Dingell VA Medical Center
Department
Type
DUNS #
002643443
City
Detroit
State
MI
Country
United States
Zip Code
48201
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Mottillo, Emilio P; Paul, George M; Moore, Hsiao-Ping H et al. (2014) Use of fluorescence microscopy to probe intracellular lipolysis. Methods Enzymol 538:263-78