The goal of this project is to develop a nanomicelle drug delivery system that can specifically target bladder cancer. With the funding of the VA Career Development Award-2 (CDA-2, PI: Pan), a bladder cancer-targeting ligand named PLZ4 was developed. PLZ4 binds to both human and dog bladder cancer cell lines and cancer cells from clinical specimens, suggesting that the pre-clinical studies can be performed in dogs with spontaneous bladder cancer. PLZ4 does not bind to normal urothelial cells, inflamed bladder cells, blood cells, vascular endothelial cells an fibroblasts. Recently, Kit Lam, MD, PhD, (Dr. Pan's VA CDA-2 mentor) developed biocompatible and biodegradable nanomicelles. Chemotherapeutic and imaging agents can be loaded inside the nanomicelles. When they are decorated with PLZ4 on surface, these targeting nanomicelles together with the drug load are delivered into bladder cancer cells. Targeting PLZ4-nanomicelles preferentially concentrate at the bladder cancer xenograft sites in vivo and can significantly prolong survival when compared to non-targeting nanomicelles. In this project, we will optimize the structure of the PLZ4-nanomicelles to achieve the maximal drug loading and delivery, and determine the in vivo targeting and drug distribution in mice carrying bladder cancer xenografts developed from human clinical specimens. A pilot study will be conducted in dog patients carrying spontaneous bladder cancer in order to obtain the preliminary toxicity and efficacy data.
This project aims to develop a multi-functional nanomicelle drug delivery system that can specifically deliver the chemotherapeutic drug paclitaxel to bladder cancer. The nanomicelle system can possibly improve treatment efficacy and lower therapy-associated toxicity.
Showing the most recent 10 out of 16 publications