This application will address the unmet need for superior treatment outcomes for adults with acute lymphoblastic leukemia (ALL), and will develop the tools needed for personalized treatment to allow a more expanded use of the unique anti-cancer drug called L-asparaginase. Unlike pediatric ALL, a disease with a cure rate of >90%, the cure rate of adult ALL is <40%. One significant difference between the treatment of pediatric and adult ALL patients is that only the pediatric regimen always includes the drug L-asparaginase. Indeed, it was shown that cure rates are highly dependent on using this drug, and for the patient being able to complete the full course of treatment. Unfortunately, the side effects of L-asparaginase treatment often require prematurely stopping use of this drug. These L-asparaginase side effects can be traced directly to the bacterial origin and properties of all current FDA-approved L-asparaginases (and not to the anti-cancer asparagine depletion effect of drug). Being bacterial enzymes, currently approved drugs are highly immunogenic. Although a portion of this clinical problem has recently been addressed by pegylating the enzyme, the other source of side effects, the L- glutaminase co-activity of these bacterial enzymes, still remains. We propose a strategy that would address both the immunogenic and L-glutaminase-related side effects, in which the bacterial enzymes are replaced by human-like L-asparaginases that are devoid of L-glutaminase co-activity. The more similar a biologic is to a human sequence, the less likely it would be immunogenic. In our work to date, we identified a mammalian L-asparaginase (referred to as gpASNas1) that is 70% identical to the human enzyme (as compared to the mere 25% identity of the bacterial enzymes), and we have increased that percentage identity to 85% by employing a genetic screen and structural information. In our proposed work here, we have identified a path that will increase this percent identity to >95%. As importantly, gpASNase1 is devoid of the toxicity-causing L-glutaminase activity, so as a drug, it will also lack those side effects that are caused by glutamine depletion. Critically, in a mouse xenograft model of human T-ALL and B-ALL, we observed a potent anti-cancer effect of these human-like L-asparaginase drugs, which serves to demonstrate that the L-glutaminase activity is not required for killing the cancer cells. Moreover, as compared to the L- glutaminase containing FDA drug, our L-asparaginase version without this co-activity has exhibited reduced toxicity. Thus, the L-asparaginase variant that will be developed by the proposed work will have a high impact on ALL therapy, especially for adults, and thus with special relevance for veterans. In addition to impacting ALL treatment, our vision is to expand the use of L-asparaginases to other malignancies. A main factor that currently prevents the expanded use of L-asparaginases (in addition to aforementioned side effects that will be largely reduced by our variants) is the lack of a method to identity patients who would most benefit from this drug. To remedy this deficiency and to promote personalizing medicine, we will first identify the factors that determine whether a cancer cell is sensitive or resistant to L- asparaginase, and then use this understanding to develop a predictive screen for L-asparaginase. Success in the proposed work will be transformative, as it will expand the use of L-asparaginases beyond ALL to other blood cancers, through the combination of a drug that is safer (by being less immunogenic and by lacking L-glutaminase co-activity) with a companion biomarker that can predict a patient's response to this drug.

Public Health Relevance

This research will advance blood cancer therapy by rendering an existing, effective pediatric drug (L- asparaginase) safe for use by the adult patient population, and possibly other blood cancer patients. All current FDA-approved L-asparaginases have significant immunological and toxic side effects, particularly for adults, because they (i) are bacterial enzymes, and (ii) have L-glutaminase co-activity. We will replace the bacterial enzymes with human-like enzymes, with two significant benefits: (i) they will be less immunogenic, and (ii) they will be devoid of the toxicity-causing L-glutaminase co-activity. We also will delineate factors that determine whether a patient will respond or not to this unique drug. The combination of a safer L-asparaginase drug (which will permit its use by the adult VA patient population), with a screen that can predict which patients would benefit most from this treatment, will impact the treatment of veterans with ALL, and will also expand the use of L-asparaginase to veterans with other blood cancers, and possibly, select solid tumors.

National Institute of Health (NIH)
Veterans Affairs (VA)
Non-HHS Research Projects (I01)
Project #
Application #
Study Section
Hematology (HEMA)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jesse Brown VA Medical Center
United States
Zip Code
Nguyen, Hien Anh; Su, Ying; Zhang, Jenny Y et al. (2018) A Novel l-Asparaginase with low l-Glutaminase Coactivity Is Highly Efficacious against Both T- and B-cell Acute Lymphoblastic Leukemias In Vivo. Cancer Res 78:1549-1560
Nguyen, Hien Anh; Durden, Donald L; Lavie, Arnon (2017) The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity. Sci Rep 7:41643
Rigouin, Coraline; Nguyen, Hien Anh; Schalk, Amanda M et al. (2017) Discovery of human-like L-asparaginases with potential clinical use by directed evolution. Sci Rep 7:10224
Nguyen, Hien Anh; Su, Ying; Lavie, Arnon (2016) Structural Insight into Substrate Selectivity of Erwinia chrysanthemi L-asparaginase. Biochemistry 55:1246-53
Nguyen, Hien Anh; Su, Ying; Lavie, Arnon (2016) Design and Characterization of Erwinia Chrysanthemi l-Asparaginase Variants with Diminished l-Glutaminase Activity. J Biol Chem 291:17664-76
Schalk, Amanda M; Antansijevic, Aleksandar; Caffrey, Michael et al. (2016) Experimental Data in Support of a Direct Displacement Mechanism for Type I/II L-Asparaginases. J Biol Chem 291:5088-100