Our overall goal is to define the molecular mechanisms whereby cell-extracellular matrix (ECM) interactions regulate renal tubulogenesis. Renal tubules are highly ordered terminally differentiated structures consisting of polarized epithelial cells derived from either the ureteric bud (UB) or the metanephric mesenchyme (MM). Because biological changes occurring during renal tubulogenesis are best characterized in the context of renal development, we use the UB as a model to study basic mechanisms of tubule formation. However these processes are also critically important in understanding the pathophysiology of congenital renal diseases such as polycystic kidney disease and renal dysplasia which affect the adult Veteran population. Furthermore, many features of renal tubule development are recapitulated in renal recovery following acute kidney tubule injury, which is a major cause of morbidity and mortality in Veterans. The UB originates from the Wolffian duct and gives rise to the collecting system of the mature kidney from the collecting ducts (CD) to the trigone of the bladder. The renal papilla and CDs develop by undergoing iterative branching morphogenesis, a complex process that is, at least in part, dependent on cell-ECM interactions. We previously demonstrated that integrins are critical for tubulogenesis. Integrins are transmembrane receptors for ECM composed of non-covalently bound and subunits. 1 is the most abundantly expressed integrin subunit in the kidney and can bind 12 different a subunits. The 1 cytoplasmic tail plays a critical role in integrn function by binding multiple cytoplasmic proteins which regulate integrin- mediated signaling and cytoskeleton modulation. The integrin linked kinase (ILK)/Pinch/Parvin (IPP) complex is one of the key scaffolding hubs that bind the integrin 1 cytoplasmic tail. We previously showed that ILK and Pinch are critical for tubule formation; however, the role of Parvin is still unknown. In this Merit renewal we will define how the IPP complex interacts with the 1 integrin tail and how specific interactions among the various IPP components regulate renal tubulogenesis by testing the hypotheses that a) distinct IPP components have specific roles in mediating renal tubulogenesis and b) IPP/1 integrin interactions are dynamically regulated by certain 1 tail residues. To test these hypotheses we will perform the following 3 aims. 1) Determine the mechanisms whereby ILK regulates development and maintenance of the kidney collecting system. 2) Determine the role of Parvin in the development and maintenance of the kidney collecting system. 3) Determine the mechanism whereby the 1 integrin cytoplasmic tail recruits the IPP complex. This study will generate novel insights into the molecular basis whereby 1 integrins and the ILK/Pinch/Parvin complex regulate renal tubulogenesis. Understanding this basic cell biological process will help with our comprehension of the pathophysiology of congenital renal diseases resulting in abnormal tubule formation as well as how tubules recover from acute injury. Ultimately a better understanding of these processes might lead to novel therapeutics for the treatment of renal disease caused by dysregulated tubule formation.

Public Health Relevance

We anticipate that this study will generate novel insights into the role of integrins and their binding partners, Integrin linked kinase/Pinch/Parvin in renal tubulogenesis. This knowledge is fundamental to our understanding of how the renal collecting system functions and could potentially define new etiologies for dysmorphic dysgenic kidneys, cystic renal diseases and decreased nephron formation. All of these conditions either cause chronic renal disease or increase the rate of its progression.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX002196-03
Application #
8803371
Study Section
Nephrology (NEPH)
Project Start
2013-04-01
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Veterans Health Administration
Department
Type
DUNS #
156385783
City
Nashville
State
TN
Country
United States
Zip Code
37212
Tseng, Hui-Yuan; Samarelli, Anna V; Kammerer, Patricia et al. (2018) LCP1 preferentially binds clasped ?M?2 integrin and attenuates leukocyte adhesion under flow. J Cell Sci 131:
Sausville, Lindsay N; Gangadhariah, Mahesha H; Chiusa, Manuel et al. (2018) The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production. Cancer Res 78:4865-4877
Brown, Kyle L; Banerjee, Surajit; Feigley, Andrew et al. (2018) Salt-bridge modulates differential calcium-mediated ligand binding to integrin ?1- and ?2-I domains. Sci Rep 8:2916
Cleghorn, Whitney M; Bulus, Nada; Kook, Seunghyi et al. (2018) Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs. Cell Signal 42:259-269
Mathew, Sijo; Palamuttam, Riya J; Mernaugh, Glenda et al. (2017) Talin regulates integrin ?1-dependent and -independent cell functions in ureteric bud development. Development 144:4148-4158
Williams, Ashley S; Trefts, Elijah; Lantier, Louise et al. (2017) Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes 66:325-334
Viquez, Olga M; Yazlovitskaya, Eugenia M; Tu, Tianxiang et al. (2017) Integrin alpha6 maintains the structural integrity of the kidney collecting system. Matrix Biol 57-58:244-257
Gewin, Leslie; Zent, Roy; Pozzi, Ambra (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552-560
Polosukhina, Dina; Love, Harold D; Moses, Harold L et al. (2017) Pharmacologic Inhibition of ?-Catenin With Pyrvinium Inhibits Murine and Human Models of Wilms Tumor. Oncol Res 25:1653-1664
Polosukhina, Dina; Love, Harold D; Correa, Hernan et al. (2017) Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol Oncol 11:405-421

Showing the most recent 10 out of 41 publications