Following return from the Gulf War (GW), Veterans have exhibited of a constellation of symptoms - designated Gulf War Illness (GWI) - that cannot be associated with a single disease. GW Veterans also show increased rates of developing psychological symptoms and psychiatric disorders, along with alterations in hypothalamic-pituitary-adrenal (HPA) axis function and neuroanatomical changes. The precise cause for these symptoms remains unknown. The acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) was used as prophylaxis against the deleterious effects of nerve agents during the GW. When combined with the operational stress experienced by soldiers, this PB exposure has been proposed as one of the causes of the late cognitive dysfunction in GWI. Other studies determined that PB is a causative factor in the development of impaired immune cell function in GW Veterans, which may contribute to the memory deficits observed in GWI. Since vagal cholinergic afferents and efferents control a reflex circuit that regulates inflammation, we propose to investigate the hypothesis that the combined effects of stress and PB exposure result in altered immune function, which then leads to modifications in cholinergic responses in key brain areas that lead to cognitive deficits. Using a preclinical model of combined repeated psychological stress and PB exposure, we will test our overarching hypothesis that the neurocognitive deficits in GWI are related to combined effects of PB and repeated stress on immune function that alters acetylcholine function in hippocampus. This hypothesis will be tested in the following Aims:
Aim 1 will examine whether the combination of PB + repeated stress induces HPA axis dysfunction, increases cytokine levels, reduces the activity of cholinergic projections to the hippocampus and modulates vagal medullary centers.
Aim 2 will examine hippocampal synaptic re-organization, neuronal and microglia dendritic architecture and neuronal degeneration, analyses which would provide a functional anatomical basis for cognitive deficits observed in RRS + PB rats.
Aim 3 will directly assess the combined effects of PB and stress exposure on acetylcholine release in the hippocampus. In vivo microdialysis will be used to examine basal and behaviorally-induced changes in hippocampal acetylcholine levels during the performance of a hippocampal-dependent task and during an exposure to an acute stressor.
Aim 4 will more directly assess how stress and PB affect immune function via immunological analyses performed in plasma, spleen, and lymph nodes, as well as microglia isolated from the hippocampus, after exposure to PB +/- repeated stress at early and delayed time points. Successful completion of these studies will demonstrate that the combination of PB + repeated stress exposure elicits peripherally-mediated changes in pro-inflammatory cytokines/chemokines that are mechanistically responsible for deficits in hippocampal cholinergic activity, thereby providing a neurochemical and anatomical basis for behavioral deficits following exposure to PB and stressful events. Most importantly, successful completion of the proposed studies will identify loci for therapeutic intervention that can be quickly implemented for the treatment of GWI in our Veterans.

Public Health Relevance

Following return from the Gulf War (GW), Veterans have experienced of a constellation of symptoms - designated Gulf War Illness (GWI) - that include cognitive-psychological disturbances such as memory loss. The acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB), which was used as prophylaxis against the deleterious effects of nerve agents during the GW, is proposed to be an etiological factor in the development of GWI, particularly when coupled with the stressful experiences of deployment. The overall goal of this proposal is to determine whether combined exposure to PB and stress leads to inflammatory changes that drive alterations in brain cholinergic function and ultimately to cognitive deficits. Successful completion of these studies will identify loci for therapeutic intervention that can be quickly implemented for the treatment of GWI in our Veterans.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01BX002664-01A1
Application #
8821767
Study Section
Special Emphasis - Research on Gulf War Veterans' Illnesses (SPLD)
Project Start
2015-07-01
Project End
2019-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Veterans Health Administration
Department
Type
DUNS #
086371846
City
Columbia
State
SC
Country
United States
Zip Code
29209
Finnell, Julie E; Muniz, Brandon L; Padi, Akhila R et al. (2018) Essential Role of Ovarian Hormones in Susceptibility to the Consequences of Witnessing Social Defeat in Female Rats. Biol Psychiatry 84:372-382
Ferrario, Carrie R; Reagan, Lawrence P (2018) Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology 136:182-191
Reichelt, A C; Stoeckel, L E; Reagan, L P et al. (2018) Dietary influences on cognition. Physiol Behav 192:118-126
Macht, Victoria A; Reagan, Lawrence P (2018) Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective. Front Neuroendocrinol 49:31-42
Van Doorn, Catherine; Macht, Victoria A; Grillo, Claudia A et al. (2017) Leptin resistance and hippocampal behavioral deficits. Physiol Behav 176:207-213
Macht, V A; Vazquez, M; Petyak, C E et al. (2017) Leptin resistance elicits depressive-like behaviors in rats. Brain Behav Immun 60:151-160
Wilson, Marlene A; Reagan, Lawrence P (2016) Special Issue: New Perspectives in PTSD. Exp Neurol 284:115-118
Wilson, Marlene A; Grillo, Claudia A; Fadel, Jim R et al. (2015) Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiol Stress 1:195-208