This proposed project uses a multimodal cognitive and neuroimaging approach to examine early changes in semantic memory in preclinical AD (pcAD;defined as cognitively normal older adults with CSF pathology indicative of AD). The project has three main goals: (1) to test cognitive models of semantic memory in pcAD, (2) to examine functional brain response to semantic memory tasks in pcAD, and (3) to reveal neurovascular function in pcAD. To achieve these goals, we systematically test semantic memory in pcAD to determine whether difficulty with person-identification knowledge [e.g., Famous Faces (FF)] results from linguistic access difficulty consistent with the Retrieval Account or a category-specific deficit consistent with the Storage Account of AD. In the process, we investigate the influence of autobiographical significance and contrast historical vs. remote vs. recent FF knowledge to examine for a temporal gradient to reveal the contribution of episodic vs. semantic memory in person-identification knowledge in pcAD. We use the innovative calibrated fMRI technique to examine for group differences in the neural correlates of person-identification vs. object-identification semantic knowledge. Since calibrated fMRI provides a measure of the cerebral metabolic rate of oxygen consumption (CMRO2), we examine the relationship between resting and functional CBF, BOLD response, CMRO2, and CVD risk in pcAD to determine whether CMRO2, is less susceptible to cerebrovascular alteration than the fMRI BOLD response, consistent with the notion that CMRO2 is a better indicator of neural function. By integrating functional and perfusion brain markers with cognitive performance we thoroughly test models of neural recruitment as a compensatory mechanism in pcAD. Examination of the possible modulating effects of cerebrovascular disease risk (e.g., stroke risk, PP, WML burden) on cognition and brain function will bring us closer to a comprehensive biomarker model of pcAD to improve diagnostic acumen and prognostic sensitivity to the earliest cognitive and brain changes associated with incipient cognitive decline. Taken together, the project aims to identify cognitive and quantitative functional neurovascular brain biomarkers of cognitive decline in presymptomatic adults with AD neuropathology.

Public Health Relevance

Alzheimer's disease (AD) is the leading cause of dementia in the elderly. By 2050, 14 million Americans are expected to have AD. Close to 40% of the patients served by the VA are elderly. Since age is the greatest risk factor for AD, the increasing incidence of AD in VA Systems will significantly impact the VA's mission. The long preclinical phase of AD provides a critical opportunity for potential intervention with disease-modifying treatment, if we can elucidate the link between the AD neuropathological process and emergence of the clinical syndrome. Delaying the onset of AD by 5 years would result in a 57% reduction in number of patients and reduce projected Medicare costs of AD by 283 billion dollars with substantial reduction in VA Healthcare costs as well. We integrate multimodal neuroimaging techniques with sensitive neuropsychological test procedures to reveal the association between AD neuropathology, cognition, and functional brain variables to identify predictors of cognitive decline and improve diagnostic acumen to guide early intervention.

National Institute of Health (NIH)
Veterans Affairs (VA)
Non-HHS Research Projects (I01)
Project #
Application #
Study Section
Mental Health and Behavioral Science B (MHBB)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
VA San Diego Healthcare System
San Diego
United States
Zip Code
Jurick, Sarah M; Weissberger, Gali H; Clark, Lindsay R et al. (2018) Faulty Adaptation to Repeated Face-Name Associative Pairs in Mild Cognitive Impairment is Predictive of Cognitive Decline. Arch Clin Neuropsychol 33:168-183
Reas, Emilie T; Hagler Jr, Donald J; White, Nathan S et al. (2018) Microstructural brain changes track cognitive decline in mild cognitive impairment. Neuroimage Clin 20:883-891
Hays, Chelsea C; Zlatar, Zvinka Z; Campbell, Laura et al. (2018) Subjective Cognitive Decline Modifies the Relationship Between Cerebral Blood Flow and Memory Function in Cognitively Normal Older Adults. J Int Neuropsychol Soc 24:213-223
Reas, Emilie T; Hagler Jr, Donald J; White, Nathan S et al. (2017) Sensitivity of restriction spectrum imaging to memory and neuropathology in Alzheimer's disease. Alzheimers Res Ther 9:55
Hays, Chelsea C; Zlatar, Zvinka Z; Campbell, Laura et al. (2017) Temporal gradient during famous face naming is associated with lower cerebral blood flow and gray matter volume in aging. Neuropsychologia 107:76-83
Zlatar, Zvinka Z; Bischoff-Grethe, Amanda; Hays, Chelsea C et al. (2016) Higher Brain Perfusion May Not Support Memory Functions in Cognitively Normal Carriers of the ApoE ?4 Allele Compared to Non-Carriers. Front Aging Neurosci 8:151
Hays, Chelsea C; Zlatar, Zvinka Z; Wierenga, Christina E (2016) The Utility of Cerebral Blood Flow as a Biomarker of Preclinical Alzheimer's Disease. Cell Mol Neurobiol 36:167-79
Weissberger, Gali H; Gollan, Tamar H; Bondi, Mark W et al. (2015) Language and task switching in the bilingual brain: Bilinguals are staying, not switching, experts. Neuropsychologia 66:193-203
Dev, Sheena I; McKenna, Benjamin S; Sutherland, Ashley N et al. (2015) Increased cerebral blood flow associated with better response inhibition in bipolar disorder. J Int Neuropsychol Soc 21:105-15
Wierenga, Christina E; Hays, Chelsea C; Zlatar, Zvinka Z (2014) Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease. J Alzheimers Dis 42 Suppl 4:S411-9