Disruptions in synaptic transmission underlie the symptoms of Alzheimer's disease patients, namely memory and cognitive deficits. Both neuronal cell death and synaptic dysfunction, independent of cell death, appear to be responsible for these deficits. Amyloid-p (A3) peptide, the primary constituent of neuritic plaques, has been shown to depress synaptic transmission in several models of disease. The objective of this application is to determine the precise types and conformations of A? that mediate these alterations in neurotransmission, as well as mechanisms by which they act. Specific conformations of naturally-produced A? will be isolated from cell lines, as well as from human AD brain tissue since this most closely mimics the types of A? that are present within the disease state. The rationale for this proposal is that an understanding of how A? contributes to neuronal dysfunction could lead to identification of better ways to diagnose the disease, as well as lead to potential targets for therapeutic intervention. In preliminary data, we demonstrate that A? can alter synaptic transmission, likely through both presynaptic and postsynaptic mechanisms. We also show that synaptic activity can regulate release of A? from neurons into the extracellular space. Together, this suggests that synaptically-released A? may feedback to depress neuronal function. We propose to study the effect and mechanisms of A? on synaptic activity using electrophysiology and live-cell imaging in primary neuronal cultures and acute brain slices, as well as a limited series of studies in vivo. The proposed training in electrophysiology and imaging will greatly enhance the career development of the applicant, allowing him to study synaptic transmission from many perspectives. Importantly, the scientific and technical expertise gained in the course of these studies will allow the candidate to attain his long-term goal of establishing an independent research career in neuroscience. Short description. Disruptions in synaptic transmission underlie many of the symptoms of Alzheimer's disease patients. This proposal will determine how naturally-produced A?, a key factor in Alzheimer's disease pathogenesis and progression, affects synaptic transmission. Understanding the causes of synaptic dysfunction may provide new avenues for diagnosis and treatment of the disease. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01AG029524-02
Application #
7477509
Study Section
National Institute on Aging Initial Review Group (NIA)
Program Officer
Snyder, Stephen D
Project Start
2007-08-01
Project End
2012-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
2
Fiscal Year
2008
Total Cost
$91,581
Indirect Cost
Name
Washington University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Landreth, Gary E; Cramer, Paige E; Lakner, Mitchell M et al. (2013) Response to comments on ""ApoE-directed therapeutics rapidly clear ?-amyloid and reverse deficits in AD mouse models"". Science 340:924-g
Esparza, Thomas J; Zhao, Hanzhi; Cirrito, John R et al. (2013) Amyloid-? oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 73:104-19
Prabhulkar, Shradha; Piatyszek, Rudolph; Cirrito, John R et al. (2012) Microbiosensor for Alzheimer's disease diagnostics: detection of amyloid beta biomarkers. J Neurochem 122:374-81
Cramer, Paige E; Cirrito, John R; Wesson, Daniel W et al. (2012) ApoE-directed therapeutics rapidly clear ?-amyloid and reverse deficits in AD mouse models. Science 335:1503-6
Xiao, Qingli; Gil, So-Chon; Yan, Ping et al. (2012) Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem 287:21279-89
Verges, Deborah K; Restivo, Jessica L; Goebel, Whitney D et al. (2011) Opposing synaptic regulation of amyloid-? metabolism by NMDA receptors in vivo. J Neurosci 31:11328-37
Cirrito, John R; Disabato, Brianne M; Restivo, Jessica L et al. (2011) Serotonin signaling is associated with lower amyloid-? levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108:14968-73
Bero, Adam W; Yan, Ping; Roh, Jee Hoon et al. (2011) Neuronal activity regulates the regional vulnerability to amyloid-? deposition. Nat Neurosci 14:750-6
Hong, Soyon; Quintero-Monzon, Omar; Ostaszewski, Beth L et al. (2011) Dynamic analysis of amyloid ?-protein in behaving mice reveals opposing changes in ISF versus parenchymal A? during age-related plaque formation. J Neurosci 31:15861-9
Kang, Jae-Eun; Lim, Miranda M; Bateman, Randall J et al. (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005-7

Showing the most recent 10 out of 14 publications