Acute leukemia is a malignancy of the hematopoietic elements that results at least in part from inappropriate activation of tyrosine kinases (TK). The most frequent somatic mutation associated with adult acute myeloid leukemia (AML) to date is the internal tandem duplication (ITD) of the FLT3 gene, a member of the Type III PDGF superfamily of receptor TKs. The FLT3 ITD defect results in the constitutive activation of the tyrosine kinase in the absence of ligand binding. Clinical studies thus far, however, have provided contradictory results with regards to presence of FLT3 ITD and prognostic significance of this defect in AML. These inconsistencies may be due to factors known to have confounding prognostic importance, such as varying cytogenetics, age, and treatment regimens. We examined a group of AML patients homogeneous for age, cytogenetics and treatment, and all considered at standard risk for relapse following therapy. We demonstrated three distinct genotypes among 82 patient samples examined: patients homozygous for the wild type (WT) FLT3 gene; patients heterozygous (FLT3ITD/WT), and patients hemizygous, i.e., FLT3 ITD in the absence of the WT gene, or FLT3ITD/-. Only the latter was a highly significant predictor of profoundly worse prognosis in AML patients compared to the others considered at standard risk. The overall research objective outlined in this proposal is to understand the mechanism by which the hemizygous genotype confers an especially poor prognosis, and to target this molecular defect in vitro and in vivo with a FLT3-specific inhibitor. To accomplish this goal, AIM 1 will investigate if a constitutively active mutant FLT3 in the absence of wild-type FLT3 confers a dominant positive gain-of-function role using in vitro and in vivo models.
AIM 2 will assess whether proliferation and survival of FLT3 ITD-positive patient AML cells are selectively inhibited via induction of apoptosis by newly developed FLT3 inhibitor compounds. Funding of this K01 Mentored Minority Career Development Award will provide invaluable training for the applicant in the area of molecular mechanisms of disease, animal models for the study of human leukemia, and molecular targeted approaches to cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01CA096887-05
Application #
7107916
Study Section
Subcommittee G - Education (NCI)
Program Officer
Springfield, Sanya A
Project Start
2002-09-20
Project End
2007-08-31
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
5
Fiscal Year
2006
Total Cost
$143,575
Indirect Cost
Name
Ohio State University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Whitman, Susan P; Hackanson, Bjorn; Liyanarachchi, Sandya et al. (2008) DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 112:2013-6
Langer, Christian; Radmacher, Michael D; Ruppert, Amy S et al. (2008) High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) st Blood 111:5371-9
Whitman, Susan P; Ruppert, Amy S; Radmacher, Michael D et al. (2008) FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 111:1552-9
Marcucci, Guido; Maharry, Kati; Radmacher, Michael D et al. (2008) Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26:5078-87
Caligiuri, Michael A; Briesewitz, Roger; Yu, Jianhua et al. (2007) Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110:1022-4
Marcucci, Guido; Maharry, Kati; Whitman, Susan P et al. (2007) High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 25:3337-43
Whitman, Susan P; Ruppert, Amy S; Marcucci, Guido et al. (2007) Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 109:5164-7
Dorrance, Adrienne M; Liu, Shujun; Yuan, Weifeng et al. (2006) Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 116:2707-16