Recently we cloned and characterized the gene for cytochrome P450 4F3 (CYP4F3). The gene contains 14 exons and 13 introns, and undergoes alternative splicing to generate two splice forms containing either exon 3 or exon 4. These isoforms catalyze omega-hydroxylation of different substrates. The isoform expressing exon 4 (CYP4F3A) utilizes the inflammatory mediator leukotriene B4 (LTB4) as its substrate and renders it inactive for pro-inflammatory functions such as neutrophil chemoattraction. LTB4 has been implicated as a pathological mediator in inflammatory disorders such as inflammatory bowel disease, glomerulonephritis, and asthma. The uniquely low Km of CYP4F3A for LTB4, and its unique localization among CYP4 enzymes to myeloid cells, suggest that its expression plays a central role in the control of LTB4-mediated inflammation. The isoform of CYP4F3 expressing exon 3 (CYP4F3B) utilizes arachidonic acid as a substrate and generates 20-HETE, an intracellular activator of protein kinase C and Ca2+/calmodulin-dependent kinase II. 20-HETE is a preeminent eicosanoid in the kidney where it performs a vasoactive and natriuretic function, but it is also active in many other tissues. Preliminary data suggests that the range of CYP4F3 expression is extended beyond myeloid cells by alternative promoter usage. The hypothesis of this proposal is that coordinated tissue-specific expression and splicing determine whether the CYP4F3 gene functions to inactivate a bioactive eicosanoid (LTB4) in inflammation, or generate a bioactive eicosanoid (20-HETE). The goals of the proposal are to determine how the expression of the different functional forms of CYP4F3 are regulated.
In Specific Aim 1, the tissue-specific regulation of CYP4F3 gene expression will be investigated. Luciferase reporter constructs, DNase I footprinting, EMSA, and site-directed mutagenesis will be employed to identify promoter elements that regulate transcription in myeloid cells, and non-hematopoietic tissues such as liver. An initial characterization of DNA elements that regulate splicing will be performed using minigene constructs in splicing assays.
In Specific Aim 2, the functional consequences of CYP4F3 expression will be studied. The possibility of additional roles for CYP4F3A in inflammatory signal transduction pathways will be investigated. We will determine if reactive oxygen species generated during CYP4F3A-dependent LTB4 metabolism can activate stress-activated protein kinases (SAPKs) via the dissociation of ASK1 and thioredoxin. The tissue localization of CYP4F3 gene products in the gastrointestinal tract and kidney will be analyzed by immunohistochemistry, in situ hybridization, and isoform-specific PCR.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Scientist Development Award - Research & Training (K01)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Podskalny, Judith M,
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Christmas, Peter; Tolentino, Karine; Primo, Valeria et al. (2006) Cytochrome P-450 4F18 is the leukotriene B4 omega-1/omega-2 hydroxylase in mouse polymorphonuclear leukocytes: identification as the functional orthologue of human polymorphonuclear leukocyte CYP4F3A in the down-regulation of responses to LTB4. J Biol Chem 281:7189-96
Soberman, Roy J; Christmas, Peter (2003) The organization and consequences of eicosanoid signaling. J Clin Invest 111:1107-13
Christmas, Peter; Carlesso, Nadia; Shang, Haibo et al. (2003) Myeloid expression of cytochrome P450 4F3 is determined by a lineage-specific alternative promoter. J Biol Chem 278:25133-42
Christmas, Peter; Weber, Brittany M; McKee, Mary et al. (2002) Membrane localization and topology of leukotriene C4 synthase. J Biol Chem 277:28902-8
Henne, K R; Kunze, K L; Zheng, Y M et al. (2001) Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry 40:12925-31
Christmas, P; Jones, J P; Patten, C J et al. (2001) Alternative splicing determines the function of CYP4F3 by switching substrate specificity. J Biol Chem 276:38166-72