? The objective of this study is to elucidate the role of the hereditary hemochromatosis gene (HFE) - Transferrin receptor (TFR1) interaction in vivo. HFE is a major histocompatibility complex (MHC) class l-like gene that forms a protein-protein complex with TFR soon after synthesis and is transported to the cell membrane. This interaction causes a conformational change in TFR1, reducing the affinity of the receptor for holo-transferrin (Fe-TF). Mutations in HFE disrupt its conformation and interaction with (2-microglobulin, and cause a decrease in cell surface expression of the HFE protein. Previous studies have investigated the HFE/TFR interaction interface by co-crystallization of HFE and TFR1, by site-directed mutagenesis and by in vitro binding studies. We chose to introduce two mutations into the murine Tfr1, L622A and R654A, to study the role of the Hfe/Tfr1 interaction in vivo. The L622A mutation disrupts a leucine residue that is essential for interaction between Hfe and Tfr1, but is not crucial for the Tfr1/Tf interaction. Conversely, the R654A substitution greatly decreases the affinity of Tfr1 for Tf but has no impact on the Hfe/Tfr1 interaction. Several parameters will be analyzed to define the phenotype of the genetically engineered mice. Liver iron stores will be used as an index of intestinal iron absorption, and serum transferrin saturation and spleen iron stores will be used to assess macrophage iron recycling and stores. The resulting data will give new insight into the function of the Hfe/Tfr1 complex and aid in distinguishing among competing models for how Hfe regulates iron homeostasis.
The specific aims of this proposal are: 1) to generate mouse models where Tfr1 is unable to interact with Tf, but its ability to bind to Hfe is unaffected, 2) to generate a mouse model where Tfr1 is able to interact with Tf, but its ability to bind to Hfe has been abrogated, and 3) to generate transgenic mouse models to examine putative signaling portions of the Hfe molecule. Knowledge gained through this study will add to our understanding of human iron disorders including hereditary hemochromatosis, iron-limited anemia, and anemia caused by chronic disease. It may inform new therapeutic strategies. The KO1 award will allow the candidate to undertake an extensive mentorship with Dr. Nancy Andrews. During this period he will have the opportunity to increase the technical skills and the knowledge base necessary for the successful generation of both transgenic and gene-targeted mice. The candidate will also learn to effectively employ this information and skill set to test complex hypotheses in iron metabolism and homeostasis. He will also have ample opportunities to interact and collaborate with leading investigators in the field through attendance at meetings and the writing of articles for publication. Most importantly, this award will assist in the transition of the candidate to become a fully independent investigator in the field of iron metabolism. ? ?

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Scientist Development Award - Research & Training (K01)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Bishop, Terry Rogers
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Wang, Chunhao; Horton, Janet K; Yin, Fang-Fang et al. (2016) Assessment of Treatment Response With Diffusion-Weighted MRI and Dynamic Contrast-Enhanced MRI in Patients With Early-Stage Breast Cancer Treated With Single-Dose Preoperative Radiotherapy: Initial Results. Technol Cancer Res Treat 15:651-60
Schmidt, Paul J; Fleming, Mark D (2012) Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2. Am J Hematol 87:588-95
Bartnikas, Thomas B; Fleming, Mark D; Schmidt, Paul J (2012) Murine mutants in the study of systemic iron metabolism and its disorders: an update on recent advances. Biochim Biophys Acta 1823:1444-50
Schmidt, Paul J; Andrews, Nancy C; Fleming, Mark D (2010) Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin. Blood 116:5679-87
Corradini, Elena; Schmidt, Paul J; Meynard, Delphine et al. (2010) BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice. Gastroenterology 139:1721-9
Guernsey, Duane L; Jiang, Haiyan; Campagna, Dean R et al. (2009) Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet 41:651-3
Schmidt, Paul J; Toran, Paul T; Giannetti, Anthony M et al. (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 7:205-14