Develop T2D Patient-Centered Treatment Suggestion Rule using EMR data In clinical practice, physicians and health care providers often follow the treatment guidance based on published research and experts' opinions. The American Diabetes Association (ADA) annually publishes updated recommendations for Type 2 Diabetes (T2D) management. Although the standardized diabetes management approach has resulted in substantial improvement in overall diabetes care, different patients often respond to treatments differently (treatment heterogeneity effects). This proposal aims to develop methods to facilitate personalized treatment recommendations using information from electronic medical records (EMR) for T2D. We will first evaluate the real world effectiveness of different treatments when diabetes patients follow the treatment guidance. We will then assess the treatment differences, identify the baseline information that has predictive ability for the treatment differences, and develop treatment recommendation rules for a single individual or subgroups of individuals. As EMR is a type of observational study, the propensity score matching method will be adopted to determine causal relationships. Finally, we will use cross validation and independent data to validate our results. Methods proposed in this research will be implemented in an efficient and user-friendly software package to further facilitate easy patient-centered treatment decision-making. The proposed method uses information from EMR data, which contains comprehensive baseline information for approximately 20 million US patients and ?real world? drug effectiveness. Therefore our method bridges the gap of using ?big and generalizable? data for patient-centered outcomes research.

Public Health Relevance

Type 2 Diabetes (T2D) is one of most costly chronic medical conditions and its care incurs significant burdens on individuals, society, and the health care system. The standardized T2D management approach has resulted in substantial improvement in overall diabetes care, and is associated with a marked relative reduction in morbidity and mortality among patients with T2D. Although there are tremendous advances in diabetes care and risk identification, it still remains the leading cause of preventable blindness and nontraumatic amputations in the USA. Treatment heterogeneity is substantial among T2D patients. Given the rich information stored in electronic medical records, we thus propose to use the information from electronic medical record data to develop personalized treatment algorithms for T2D patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01DK106116-03
Application #
9476231
Study Section
Kidney, Urologic and Hematologic Diseases D Subcommittee (DDK)
Program Officer
Spain, Lisa M
Project Start
2016-08-11
Project End
2020-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Arizona
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Zhou, Jin J; Schwenke, Dawn C; Bahn, Gideon et al. (2018) Glycemic Variation and Cardiovascular Risk in the Veterans Affairs Diabetes Trial. Diabetes Care 41:2187-2194
Jeong, Kyoung Sook; Zhou, Jin; Griffin, Stephanie C et al. (2018) MicroRNA Changes in Firefighters. J Occup Environ Med 60:469-474
Hammer, Michael F; Ishii, Atsushi; Johnstone, Laurel et al. (2017) Rare variants of small effect size in neuronal excitability genes influence clinical outcome in Japanese cases of SCN1A truncation-positive Dravet syndrome. PLoS One 12:e0180485
Busch, Robert; Hobbs, Brian D; Zhou, Jin et al. (2017) Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. Am J Respir Cell Mol Biol 57:35-46
Zhang, Yiwen; Zhou, Hua; Zhou, Jin et al. (2017) Regression Models For Multivariate Count Data. J Comput Graph Stat 26:1-13
Klimentidis, Yann C; Arora, Amit; Zhou, Jin et al. (2016) The Genetic Contribution of West-African Ancestry to Protection against Central Obesity in African-American Men but Not Women: Results from the ARIC and MESA Studies. Front Genet 7:89
Klimentidis, Y C; Arora, A; Chougule, A et al. (2016) FTO association and interaction with time spent sitting. Int J Obes (Lond) 40:411-6
Zhou, Jin J; Hu, Tao; Qiao, Dandi et al. (2016) Boosting Gene Mapping Power and Efficiency with Efficient Exact Variance Component Tests of Single Nucleotide Polymorphism Sets. Genetics 204:921-931