The overall causes of obesity are a sedentary lifestyle and excess energy intake, also known as overnutrition. However, the molecular mechanisms by which overnutrition generates obesity are not fully understood. We hypothesize that overnutrition causes mitochondrial dysfunction by leading to inhibitory protein acetylation. Nicotinamide riboside (NR) is a precursor of NAD and supplementation with NR has been shown to reduce weight gain and metabolic dysfunction observed in a mouse model of overnutrition. Analysis of the mechanisms by which NR prevents weight gain may elucidate the molecular mechanisms that cause obesity. This proposal is linked to a parent study of NR supplementation in the context of overnutrition which includes both a mouse model and a randomized, placebo-controlled pilot study in human adults. The parent study will use mechanistic methods to evaluate the impact of NR supplementation on NAD metabolism in mice given overnutrition. In the human pilot study, the parent study will test the hypothesis that NR supplementation will prevent weight gain in humans in the context of overnutrition. The objective of this K01 proposal is to evaluate alterations in the NAD- targeted and global metabolome that accompany nicotinamide riboside (NR) supplementation in both mice and humans and correlate these metabolomic changes with outcomes (e.g., prevention of weight gain) in both the mouse mechanistic studies and the human clinical trial. The use of metabolomics in both the mouse and human study provides a unique opportunity to identify novel biomarkers of weight gain and NR supplementation and to link these biomarkers with clinically significant changes in NAD metabolism.
The first aim i s to evaluate the impact of NR supplementation on the comprehensive NAD metabolome in accessible biological samples. We hypothesize that the NAD metabolome will demonstrate changes associated with increased NAD utilization by SIRT3, a mitochondrial protein deacetylase. We will use NAD-targeted metabolomic analyses of urine, blood and feces to evaluate alterations in NAD metabolism associated with NR supplementation.
The second aim will explore the impact of NR supplementation in a non-targeted metabolomic analysis. We hypothesize that NR may prevent weight gain by altering metabolic pathways involved in energy expenditure. We will use non-targeted metabolomic analyses and identify important metabolomic profile changes with single value decomposition-based approaches. The results of this project will shed light on the underlying molecular mechanisms that cause obesity and may identify mechanisms for preventing obesity in the context of overnutrition.

Public Health Relevance

Obesity and overweight affect almost two thirds of Americans. This project will evaluate a new dietary intervention that may prevent weight gain. Mice and humans will be fed a high-fat diet supplemented with a placebo or nicotinamide riboside (NR), a nutrient that has recently been shown to prevent weight gain in mice. We will examine metabolites associated with NR supplementation in mice, evaluate whether NR prevents weight gain in humans, and identify biomarkers in blood and waste products that are associated with the ability of NR to prevent weight gain.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
4K01GM109309-04
Application #
9116914
Study Section
Special Emphasis Panel (ZRG1-IMST-K (50)R)
Program Officer
Okita, Richard T
Project Start
2013-09-30
Project End
2017-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
4
Fiscal Year
2016
Total Cost
$154,683
Indirect Cost
$11,458
Name
University of Iowa
Department
Type
Schools of Nursing
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52246
Ferranti, Erin P; Grossmann, Ruth; Starkweather, Angela et al. (2017) Biological determinants of health: Genes, microbes, and metabolism exemplars of nursing science. Nurs Outlook 65:506-514
Alvarez, Jessica A; Chong, Elizabeth Y; Walker, Douglas I et al. (2017) Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D3administration. Metabolism 70:31-41
Lee, Moon Jeong; Alvarez, Jessica A; Smith, Ellen M et al. (2015) Changes in Mineral Micronutrient Status During and After Pulmonary Exacerbation in Adults With Cystic Fibrosis. Nutr Clin Pract 30:838-43
Bisht, Babita; Darling, Warren G; Grossmann, Ruth E et al. (2014) A multimodal intervention for patients with secondary progressive multiple sclerosis: feasibility and effect on fatigue. J Altern Complement Med 20:347-55
Ghanta, Sirisha; Grossmann, Ruth E; Brenner, Charles (2013) Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit Rev Biochem Mol Biol 48:561-74