This K01 proposal will complete Michael Sjoding, MD, MSc's training towards his long-term career goal of improving care of patients with acute respiratory disease. Dr. Sjoding is a Pulmonary and Critical Physician at the University of Michigan with master's level training in clinical study design and biostatistics. This proposal builds on Dr. Sjoding's prior expertise, providing protected time for additional training in data science, the technical methods for deriving new knowledge about human disease from ?Big Biomedical Data? in the rich training environment at the University of Michigan. The project's research goal is to develop real-time systems to improve accuracy and timeliness of Acute Respiratory Distress Syndrome (ARDS) diagnosis using electronic health record data. ARDS is a critical illness syndrome affecting 200,000 people each year with high mortality. Under-recognition of this syndrome is the key barrier to providing evidence-based care to patients with ARDS. The research will be completed under the guidance of primary mentor Theodore J. Iwashyna, MD, PhD and co-mentors Timothy P. Hofer, MD, MSc, and Kayvan Najarian, PhD, and a scientific advisory board with additional expertise in data science and applied clinical informatics. The 5-year plan includes didactic coursework, mentored research, and professional development activities, with defined milestones to ensure successful transition to independence. The mentored research has 2 specific Aims:
Aim 1. Develop a novel system for identifying ARDS digital signatures in electronic health data to accurately identify patients meeting ARDS criteria.
Aim 2. Define the early natural history of developing ARDS, to more accurately predict patients' future ARDS risk.
Both Aims will utilize rigorous 2-part designs, with the ARDS diagnostic and prediction models developed in the same retrospective cohort and validated in temporally distinct cohorts. In completing these high-level aims, the research will leverage high-resolution electronic health record and beside-monitoring device data to study ARDS with unprecedented detail, providing new insights into ARDS epidemiology and early natural history. This work will build to at least two R01 proposals: (1) testing the impact of a real-time electronic health record- based ARDS diagnostic system to improve evidence-based care practice, (2) defining ARDS subtypes using deep clinical phenotypic data. The work will build toward a programmatic line of research using high-resolution electronic health data to improve understanding of critical illness and respiratory disease. In completing this proposal, Dr. Sjoding will acquire unique computational expertise in data science methods, complementing his previous training, which he can then readily apply to address other research challenges in respiratory health. The ambitious but feasible training and mentored research proposed during this K01 award will allow him to achieve his goal of becoming an independent investigator.

Public Health Relevance

The Acute Respiratory Distress Syndrome (ARDS) is a critical illness syndrome affecting 200,000 people each year in intensive care units with a 30% mortality rate. To improve ARDS care, new approaches are urgently needed to improve ARDS identification?the critical first step to ensuring patients receive life-saving treatments. High-resolution electronic health data may provide a clear picture of evolving ARDS; leveraging this data to develop automated systems for ARDS diagnosis will help ensure patients with ARDS are recognized early and receive timely, evidence-based treatments.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01HL136687-04
Application #
9908166
Study Section
NHLBI Mentored Clinical and Basic Science Review Committee (MCBS)
Program Officer
Reineck, Lora A
Project Start
2017-04-01
Project End
2022-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Viglianti, Elizabeth M; Kramer, Rachel; Admon, Andrew J et al. (2018) Late organ failures in patients with prolonged intensive care unit stays. J Crit Care 46:55-57
Prescott, Hallie C; Sjoding, Michael W; Langa, Kenneth M et al. (2017) Late mortality after acute hypoxic respiratory failure. Thorax :
Sjoding, Michael W (2017) Translating evidence into practice in acute respiratory distress syndrome: teamwork, clinical decision support, and behavioral economic interventions. Curr Opin Crit Care 23:406-411