My long-range goal is to have a successful academic research career in the field of retinoid neurobiology. This area is an extension of my post- doctoral research on the role of retinoic acid (RA) in the development of the retina. My work has provided new tools and techniques which I intend to use to elucidate new facets of retinoid metabolism. The retinoid vitamin A is an essential nutritional supplement required for growth, reproduction and sight. RA, the active metabolite of vitamin A, is increasingly used in the clinical treatment of cancers and skin diseases. Exposure to retinoid homologues may even come from insecticides such as methoprene. Potential hazards exist since RA, in excess, is neurotoxic, particularly in children, and is also one of the most teratogenic substances identified. Its pernicious actions are through the disregulation of the normal patterns of RA metabolism and the central nervous system (CNS) is particularly sensitive.
The aim of this proposal is to map the pathways of retinoid metabolism in the developing CNS. I will focus on the development of a single region of the brain, the cerebellum, allowing a straightforward, coherent research program to be developed. The cerebellum is a region of the CNS in which development and function can be disrupted through disturbances in RA metabolism. Accidental exposure of embryos to the acne drug Acutane(R) has shown that human cerebellar development is vulnerable to a disruption in the normal pattern of RA distribution. A high susceptibility to systemically applied retinoic acid indicates that the developing cerebellum is naturally disposed to respond to endogenously synthesized RA. l now propose to investigate the pathways of retinoid metabolism and signal transduction in the developing cerebellum in order to determine how factors that interfere with these processes disrupt development. l will be assisted by several experts at the Shriver Center in the fields of lipid analysis and molecular biology. Initially, l will use both novel and traditional techniques to study RA metabolism during normal cerebellar development, then investigate the developmental changes that result from in-vivo disturbances of such pathways. In order to facilitate future work on cerebellar abnormalities in humans l will also isolate the human homologue of the murine retinoic-acid generating enzyme.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Scientist Development Award - Research (K02)
Project #
1K02HD001179-01
Application #
2024679
Study Section
Pediatrics Subcommittee (CHHD)
Program Officer
Spinella, Giovanna M
Project Start
1997-04-01
Project End
2002-03-31
Budget Start
1997-04-01
Budget End
1998-03-31
Support Year
1
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Eunice Kennedy Shriver Center Mtl Retardatn
Department
Type
DUNS #
City
Waltham
State
MA
Country
United States
Zip Code
02254
McCaffery, Peter; Evans, James; Koul, Omanand et al. (2002) Retinoid quantification by HPLC/MS(n). J Lipid Res 43:1143-9
Smith, D; Wagner, E; Koul, O et al. (2001) Retinoic acid synthesis for the developing telencephalon. Cereb Cortex 11:894-905
Berggren, K; Ezerman, E B; McCaffery, P et al. (2001) Expression and regulation of the retinoic acid synthetic enzyme RALDH-2 in the embryonic chicken wing. Dev Dyn 222:1-16
Drager, U C; Li, H; Wagner, E et al. (2001) Retinoic acid synthesis and breakdown in the developing mouse retina. Prog Brain Res 131:579-87
Li, H; Wagner, E; McCaffery, P et al. (2000) A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev 95:283-9
Wagner, E; McCaffery, P; Drager, U C (2000) Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev Biol 222:460-70
McCaffery, P; Wagner, E; O'Neil, J et al. (1999) Dorsal and ventral rentinoic territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech Dev 85:203-14
McCaffery, P; Wagner, E; O'Neil, J et al. (1999) Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech Dev 82:119-30
Yamamoto, M; Drager, U C; Ong, D E et al. (1998) Retinoid-binding proteins in the cerebellum and choroid plexus and their relationship to regionalized retinoic acid synthesis and degradation. Eur J Biochem 257:344-50
Yamamoto, M; Drager, U C; McCaffery, P (1998) A novel assay for retinoic acid catabolic enzymes shows high expression in the developing hindbrain. Brain Res Dev Brain Res 107:103-11