Pediatric and adult patients who develop influenza virus infection are at increased risk of secondary local and systemic bacterial and fungal infections. Previous studies have shown that when human peripheral blood polymorphonuclear leukocytes are incubated with influenza virus there is depressed cellular oxidative and chemotactic activities. The mechanism for this virus-induced polymorphonuclear leukocyte dysfunction does not appear to be due to decreased receptor numbers or phagocytic activity of the cell. The cellular dysfunction is associated with virus-induced inhibition of fusion of lysosomal granules with phagosomes suggesting one possible mechanism by which the virus could depress cellular function. This project will further investigate the role of influenza virus induced disruption of lysosome-phagosome fusion in causing the abnormal oxidative and chemotactic activities that occur when cells are incubated with the virus. In addition, the mechanism by which influenza virus inhibits lysosome-phagosome fusion will be examined. Other studies will be done to determine which properties of the virus are responsible for depressed polymorphonuclear leukocyte function. These experiments will involve testing the effect on the cell of specific components of the virus which have been separated from the intact virus, comparing the properties of depressing and non-depressing virus preparations and searching for factors released from virus infected cells which inhibit granulocyte function. While the studies are designed to determine the mechanism(s) by which influenza virus alters polymorphonuclear leukocyte function, the virus should also serve as a useful probe in better understanding normal neutrophil function. An increased understanding of how influenza virus causes phagocytic cell dysfunction may allow the development of therapy to decrease the morbidity and mortality due to superinfections induced by this virus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Modified Research Career Development Award (K04)
Project #
5K04AI000670-03
Application #
3070756
Study Section
Bacteriology and Mycology Subcommittee 1 (BM)
Project Start
1985-07-01
Project End
1990-06-30
Budget Start
1987-07-01
Budget End
1988-06-30
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
Schools of Medicine
DUNS #
041418799
City
Winston-Salem
State
NC
Country
United States
Zip Code
27106
Abramson, J S; Wagner, M P; Ralston, E P et al. (1991) The ability of polymorphonuclear leukocyte priming agents to overcome influenza A virus-induced cell dysfunction. J Leukoc Biol 50:160-6
Cassidy, L F; Lyles, D S; Abramson, J S (1989) Depression of polymorphonuclear leukocyte functions by purified influenza virus hemagglutinin and sialic acid-binding lectins. J Immunol 142:4401-6
Abramson, J S; Givner, L B; Thompson, J N (1989) Possible role of tonsillectomy and adenoidectomy in children with recurrent fever and tonsillopharyngitis. Pediatr Infect Dis J 8:119-20
Cassidy, L F; Lyles, D S; Abramson, J S (1988) Synthesis of viral proteins in polymorphonuclear leukocytes infected with influenza A virus. J Clin Microbiol 26:1267-70
Abramson, J S (1988) The pathogenesis of bacterial infections in infants and children: the role of viruses. Perspect Biol Med 32:63-72
Abramson, J S; Mills, E L (1988) Depression of neutrophil function induced by viruses and its role in secondary microbial infections. Rev Infect Dis 10:326-41
Wheeler, J G; Chauvenet, A R; Johnson, C A et al. (1987) Buffy coat transfusions in neonates with sepsis and neutrophil storage pool depletion. Pediatrics 79:422-5