T cell play a central role in the human immune system and their depletion leads to increased susceptibility to infections and some malignancies. T cell development requires a period of education in the thymus, an organ that involutes in late adolescence. If T cells suitable for use in human patients could be generated in vitro, it could lead to novel immunologic therapies for infections, immunodeficiencies and malignancies. Existing In vitro systems that support T cell development use co-culture with allogeneic human or animal tissues, making them less suitable for the production of T cells for use in humans. There are remarkable similarities between the epithelial and stromal cells of the thymus and keratinocytes and fibroblasts of skin. I present evidence that human skin cells arrayed on a three-dimensional matrix support the full process of human T cell development. Newly generated T cells are diverse, functionally mature, and tolerant to self-MHC. To extend this work, I propose to 1) determine if monolayer cultures of skin cells can support T cell development, 2) to examine what stages of development are supported by keratinocytes vs. fibroblasts and to determine if skin cells transduced with the Notch ligand delta-like 1 support augmented T cell production, 3) to examine self-tolerance in T cells generated in cultures with skin cells transduced to express AIRE, 4) to demonstrate that fully autologous T cells can be generated using skin and bone marrow from a single individual and 5) to examine the ability of T cells generated in skin cell cultures to reconstitute immunodeficient mice. My goal is to develop a system in which samples of adult skin and bone marrow can be used to generate autologous, self-tolerant T cells for the treatment of human disease. This proposal describes a mentored four-year career development plan designed to facilitate my transition from post-doctoral fellow'to independent investigator. It takes advantage of the many resources available to me in the laboratory of Dr. Thomas Kupper and in the Harvard Medical School environment.
Showing the most recent 10 out of 11 publications