Liver disease caused by viral hepatitis is now a leading cause of death in HIV-infected persons, mostly due to chronic viral hepatitis. This proposal is conceived to identify molecular targets in HIV-HCV co-infected persons at risk for progressive liver disease that can be exploited therapeutically. There are at least two highly plausible mechanisms through which HIV could promote liver fibrosis in a person with ongoing chronic viral hepatitis that focus on the hepatic macrophage (Kupffer cell). There are preliminary data that show that HIV infects Kupffer cells, the largest reservoir of resident tissue macrophages in the body. While the extent and ultimate consequence of HIV infection of these cells is unknown, the Kupffer cell's role governing inflammation/fibrosis via altered signaling pathways provides a pathogenic link. In addition, HIV infection of intestinal tissues has recently been shown to markedly enhance the translocation of bacterial products (e.g. lipopolysaccharide) through portal circulation to the liver. Since Kupffer cells are chiefly responsible for the clearance of these products and since experimentally induced microbial translocation enhances liver fibrosis, HIV also could promote liver fibrosis via Kupffer cells through this mechanism. The goal of this investigation is to extend these observations by focusing on the effect of HIV infection and HIV-related microbial translocation on Kupffer cells. Initial investigations will utilize stored liver biopsies from a well-characterized repository of HIV-infected persons, focusing on defining the extent of HIV infection of Kupffer cells using immunohistologic and molecular methods. Since CCR5, a known coreceptor mediating HIV infection, plays a role in the development of experimental liver disease, subsequent studies will use isolated human Kupffer cells to identify key chemokine coreceptors on Kupffer cells that permit HIV infection. Finally, the ex vivo Kupffer cell model will be further developed to study fibrogenic signaling patterns, i.e. TGF-beta and TNF-alpha, upon lipopolysaccharide induction and HIV infection. The proposed studies will define essential mechanisms of liver disease in HIV-HCV co-infection, and the investigators will develop insights into novel therapeutics for co-infected persons.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08AI081544-05
Application #
8504682
Study Section
Acquired Immunodeficiency Syndrome Research Review Committee (AIDS)
Program Officer
Brobst, Susan W
Project Start
2009-09-23
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$128,854
Indirect Cost
$9,610
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J et al. (2014) Inferring viral dynamics in chronically HCV infected patients from the spatial distribution of infected hepatocytes. PLoS Comput Biol 10:e1003934
Kandathil, Abraham J; Graw, Frederik; Quinn, Jeffrey et al. (2013) Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. Gastroenterology 145:1404-13.e1-10
Balagopal, Ashwin; Gama, Lucio; Franco, Veronica et al. (2012) Detection of microbial translocation in HIV and SIV infection using the Limulus amebocyte lysate assay is masked by serum and plasma. PLoS One 7:e41258
Munshaw, Supriya; Hwang, Hyon S; Torbenson, Michael et al. (2012) Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users. Hepatology 56:544-54
Benten, Daniel; Schulze zur Wiesch, Julian; Sydow, Karsten et al. (2011) The transhepatic endotoxin gradient is present despite liver cirrhosis and is attenuated after transjugular portosystemic shunt (TIPS). BMC Gastroenterol 11:107
Balagopal, Ashwin; Thomas, David L; Thio, Chloe L (2010) IL28B and the control of hepatitis C virus infection. Gastroenterology 139:1865-76
Balagopal, Ashwin; Ray, Stuart C; De Oca, Ruben Montes et al. (2009) Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS 23:2397-404