Pseudomonas aeruginosa poses a major threat to human health due to limited treatment options and its ability to become resistant to antibiotics. P. aeruginosa and other Gram-negative bacteria are particularly difficult to treat because their asymmetric outer membranes, comprising an electronegative matrix of lipopolysaccharide (LPS) in the outer leaflet, form an electrostatic barrier excluding most antibiotics. The candidate aims apply advanced genomic, genetic and chemical biological strategies to study this important human pathogen, both to develop novel therapeutic agents and to gain insights into the basic biology of vulnerable targets. In work in progress, recent target-focused, whole cell screening identified 128 small molecules hypothesized to kill P. aeruginosa by disrupting LPS transport to the outer membrane.
In Aim 1, with small molecule hits in hand, the candidate proposes to develop these compounds by optimizing their activities and establishing their mechanisms of action. To this end, the candidate has already developed high- throughput gene expression profiling methods to identify and prioritize hits that induce transcriptional responses in LPS transport pathways. Preliminary data revealed one lead candidate, C0918, induced a transcriptional response remarkably similar to that of a known LPS transport inhibitor, demonstrating that mechanisms of action can be inferred by gene responses compared to those of known antibiotics. Drawing on his background in protein science, when putative target proteins emerge, the candidate outlines strategies for protein expression, purification, direct-binding studies, and structure determination by cryogenic electron microscopy. Lead compounds in Aim 1 will also serve as valuable molecular probes to investigate the regulatory pathways underpinning LPS biosynthesis and transport in Aim 2. The candidate will perform a genetic screen to discover LPS regulatory genes in P. aeruginosa by mutagenizing an engineered reporter strain, which encodes fluorescent proteins marking expression levels of key LPS synthesis and transport genes. To complemental screening efforts, the candidate will also characterize single and double mutants encoding regulated copies of these key genes in LPS biosynthesis and transport, aimed at determining phenotypic consequences when LPS biosynthetic intermediates buildup under conditions of high LPS synthesis but low transport. With the guidance of his mentor, Dr. Deb Hung, the candidate has developed a five-year training program to provide both the technical and didactic training necessary to become an independent physician-scientist focused on using small molecules to target LPS transport, while also gaining insights into its underlying regulatory machinery in P. aeruginosa. Importantly, this project will be overseen by a scientific advisory committee providing expertise in key areas of this proposal, including LPS biology, bacterial genetics, genomics, and chemical biology. Throughout the career development award period, the candidate will expand his knowledge base with complete didactic and hands-on training. The candidate will complete coursework in bioinformatics and statistics to help with analyzing genomic-wide datasets. This proposal therefore provides the necessary training and scientific foundation to achieve Dr. Romano's ultimate goal of becoming a RO1-funded physician-scientist who applies advanced genomic and chemical biological techniques to study and treat bacterial pathogens.

Public Health Relevance

Pseudomonas aeruginosa poses a major threat to human health due to limited treatment options and its ability to become resistant to antibiotics. The discovery of new drugs targeting P. aeruginosa and other Gram- negative bacteria is especially challenging due to the exclusion of most small molecules by an impermeable cell wall, coated by an electronegative matrix of lipopolysaccharide (LPS). This proposal aims to develop anti- pseudomonal LPS transport inhibitors that may improve human health, but can simultaneously be leveraged to elucidate the regulatory pathways underpinning LPS transport in P. aeruginosa.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08AI148581-02
Application #
10092101
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Xu, Zuoyu
Project Start
2020-02-03
Project End
2025-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
2
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115