RANKL-evoked [Ca2+]i oscillations play a switch-on role in osteoclast differentiation through the NFAT2 activation pathway, however, the question remains as to how RANKL evokes the [Ca2+]j oscillation-NFAT2 pathway. Some evidence has shown that cytosolic [Ca2+]i oscillations are generated mainly by influx of extracellular Ca2+ through multiple channels, which include L- and N-type channels, and Ca2+ influx is necessary for maintenance of oscillations. Schiff et al. (Schiff et al., 2000) first reported that RGS12 is capable of direct interaction with the tyrosine-phosphorylated calcium channel in culture of primary dorsal root ganglion neurons through its PTB domain. Recruitment of RGS proteins to G-protein effectors may represent an additional mechanism for signal termination in G-protein-coupled pathways/Using differential screening, we have found that regulator of G-protein signaling 12 gene (RGS12) is predominantly expressed in osteoclast like cells (OCLs). Knockdown of RGS12 expression using RNA interference (RNAi) inhibited the osteoclast differentiation induced by RANKL. The failure of osteoclast differentiation results from the absence of [Ca2+]i oscillations and NFAT2 expression. Our studies further revealed that RGS12 directly interacted with the N type calcium channel to likely regulate [Ca2+]i oscillations and that RGS12 binds with calcium sensing receptor (CaR). These in vitro data suggested that RGS12, the largest member of the RGS protein family and a multi-domain RGS protein, may play roles in numerous signaling regulatory elements. So far, little is known about the in vivo function of RGS12 and the role and mechanism of its multi-domains in osteoclast differentiation and bone resorption. Based on our preliminary data and the cited research, we hypothesize that RGS12 interacts with calcium channels, CaR, G-protein and other heterodimerization partners, to regulate generation of [Ca2+]i oscillations and trigger osteoclast differentiation. To test this hypothesis, we propose the following three Specific Aims:
Aim 1. To characterize the role of RGS12 in differentiating osteoclasts and mature osteoclasts by using lentivirus RNAi and overexpression systems.
Aim 2. To identify the mechanism of RGS12 action during osteoclast differentiation by characterization of RGS12 heterodimerization partners.
Aim 3. To define the role and mechanism of RGS12 in vivo in bone remodeling by osteoclast-specific targeted disruption of the RGS12 gene using Cre/loxP technology!

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08AR055678-03
Application #
7910475
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Chen, Faye H
Project Start
2008-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
3
Fiscal Year
2010
Total Cost
$106,342
Indirect Cost
Name
State University of New York at Buffalo
Department
Dentistry
Type
Schools of Dentistry
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Fernandes, Gabriela; Wang, Changdong; Yuan, Xue et al. (2016) Combination of Controlled Release Platelet-Rich Plasma Alginate Beads and Bone Morphogenetic Protein-2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration. J Periodontol 87:470-80
Brooks, Emily K; Tobias, Menachem E; Yang, Shuying et al. (2016) Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy. J Biomed Mater Res B Appl Biomater 104:253-62
Yuan, Xue; Serra, Rosa A; Yang, Shuying (2015) Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 1335:78-99
Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin et al. (2015) Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 54:182-95
Jules, Joel; Yang, Shuying; Chen, Wei et al. (2015) Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology. Prog Mol Biol Transl Sci 133:47-75
Keinan, David; Yang, Shuying; Cohen, Robert E et al. (2014) Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 19:634-48
Yuan, Xue; Garrett-Sinha, Lee Ann; Sarkar, Debanjan et al. (2014) Deletion of IFT20 in early stage T lymphocyte differentiation inhibits the development of collagen-induced arthritis. Bone Res 2:14038
Intini, G; Katsuragi, Y; Kirkwood, K L et al. (2014) Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions. Adv Dent Res 26:38-46
Wang, Changdong; Yuan, Xue; Yang, Shuying (2013) IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp Cell Res 319:623-32
He, Xiaoning; Dziak, Rosemary; Mao, Keya et al. (2013) Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng Part A 19:508-18

Showing the most recent 10 out of 16 publications