This Career Development proposal will support the training of Dr. David McFadden in mouse cancer models and genomics under the mentorship of Dr. Tyler Jacks with support from collaborators Drs. Meyerson, Hannon, Lander, and Getz. The candidate, Dr. McFadden, is trained in mouse genetics, internal medicine and endocrinology with a clinical practice devoted to the care of thyroid cancer patients. The mentor, Dr. Jacks, is an international leader in cancer research with a focus on the development and use of sophisticated mouse cancer models. Drs. Meyerson, Hannon, Lander, and Getz bring a wealth of expertise in human lung adenocarcinoma genetics, genomics, and bioinformatics. In this unique scientific environment, Dr. McFadden will have the opportunity to train in cancer biology and genomics in order to blend mouse cancer models with cutting edge genetic technology in order to identify novel targets for treatment in human cancer. The development of massively parallel DNA sequencing methodologies has fueled the detailed description of human cancer genomes. However, the functional relevance of specific mutations to the cancer phenotype has been more challenging to define. Carefully constructed mouse models of human cancer have been developed and utilized to carefully characterize all stages of tumorigenesis, including tumor initiation, progression, and metastasis. Although the genetically engineered mutations responsible for tumor induction in these models are known ab initio, the spectrum of mutations acquired during progression from hyperplasia to invasive neoplasm remains largely unknown. Studies have demonstrated that carefully constructed mouse models exhibit gene expression signatures and DNA copy number profiles that overlap with those detected in human cancers, suggesting that the selective pressures exerted on cancer cells are shared between mice and humans. These studies demonstrate the value of cross-species comparisons to identify functionally important driver genes that direct the diverse cellular processes that compose human cancer progression. Over this 5-year proposal, we will generate large-scale sequencing datasets from a mouse model of lung adenocarcinoma to identify the point mutations acquired during tumor evolution. We will perform cross- species comparative studies and pathway analyses to rank candidate genes and pathways of most interest, and precisely characterize the functional role of these alterations using genetically engineered mouse models and human cancer cells. Our preliminary data demonstrate that this approach is feasible. We have generated a murine lung adenocarcinoma tissue bank consisting of advanced, high-grade murine tumors, cell lines, and metastases and developed a hybridization-based enrichment platform for the capture and sequencing of cancer-relevant genes. Using this novel technology, we have sequenced murine lung adenocarcinoma cell lines and identified somatic mutations acquired during tumor progression.

Public Health Relevance

Tumor progression to invasive and metastatic tumors is responsible for most cancer deaths. This study utilizes large-scale DNA sequencing in mouse cancer models and comparative genomics to identify and dissect the functional role of genes that control tumor progression. We anticipate this work will identify new targets for treatment of invasive and metastatic cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08CA160658-06
Application #
8862422
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
6
Fiscal Year
2015
Total Cost
$180,360
Indirect Cost
$13,360
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Gopal, Raj K; Kübler, Kirsten; Calvo, Sarah E et al. (2018) Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 34:242-255.e5
Rothenberg, S Michael; McFadden, David G; Palmer, Edwin L et al. (2015) Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res 21:1028-35
Gazdar, Adi F; Savage, Trisha K; Johnson, Jane E et al. (2015) The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J Thorac Oncol 10:553-64
McFadden, David G; Papagiannakopoulos, Thales; Taylor-Weiner, Amaro et al. (2014) Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156:1298-1311
Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676-90
McFadden, David G; Vernon, Amanda; Santiago, Philip M et al. (2014) p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A 111:E1600-9
Vanden Borre, Pierre; McFadden, David G; Gunda, Viswanath et al. (2014) The next generation of orthotopic thyroid cancer models: immunocompetent orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid carcinoma. Thyroid 24:705-14
McFadden, David G; Dias-Santagata, Dora; Sadow, Peter M et al. (2014) Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 99:E2457-62
Vanden Borre, Pierre; Gunda, Viswanath; McFadden, David G et al. (2014) Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 5:3996-4010