The overall goal of this K08 application is to foster my development as an independent scientific investigator with a focus on translational research and drug development. To that end, my mentors and I have formulated a career development plan consisting of formal didactics, bench research, and involvement in the clinical trials program at the Ohio State University. The research focus of my proposal is the preclinical development of OSU-03012, a novel PDK1 inhibitor that targets AKT signaling in vestibular schwannomas (VS). OSU-03012 shall be used as a vehicle for my further training in drug development. VS are intracranial tumors that cause sensorineural hearing loss, balance abnormalities, tinnitus, vertigo, facial weakness, hydrocephalus, seizures, blindness, and even death. Current treatment options are surgery and/or radiation;however, complications remain major concerns. We have reported that the PI3-kinase/AKT pathway, a convergence point for many stimuli controlling cell proliferation and apoptosis, is active in VS. Our central hypothesis is that vestibular schwannomas rely on AKT activation to prevent apoptosis and promote cell proliferation, and molecular targeting of the AKT pathway may suppress VS growth, spare normal tissues, and be a viable therapeutic option for patients. Using a variety of in vitro laboratory techniques (cytotoxicity assays, flow cytometry, TUNEL, antibody arrays, caspase activity assays, proliferation indices, FACS, RNA interference, PCR and Western blots), we plan to better understand the end biologic effects of decreased AKT signaling on apoptosis and cell cycle regulation in VS. Simultaneously, we plan to validate the efficacy and molecular targets for OSU-03012 in vivo utilizing human malignant schwannoma xenografts, VS xenografts, and nestin-Cre Nf2-/- knockout mice that generate spontaneous peripheral schwannomas to test drug. Lastly, because treatment of VS may require long-term drug administration in order to sustain efficacy, we plan to evaluate clinically relevant pharmacodynamic (blood brain barrier penetration) and pharmacotoxicity (blood chemistries and organ toxicity) profiles for OSU-03012 during long-term dosing in rodent chow. These studies are vital to eventual FDA approval and human clinical trials for VS.

Public Health Relevance

Vestibular schwannomas (VS) cause significant clinical morbidity due to their critical location in the posterior cranial fossa. Patients currently choose between surgery and radiation therapy to treat their disease;however, post-treatment complications remain a significant concern. OSU-03012 may represent the first medical treatment alternative for patients afflicted with VS.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08DC009644-04
Application #
8324658
Study Section
Communication Disorders Review Committee (CDRC)
Program Officer
Sklare, Dan
Project Start
2009-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$232,232
Indirect Cost
$17,202
Name
University of Arizona
Department
Surgery
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Mercado-Pimentel, Melania Ester; Miller, Craig; Rolph, Daniela N et al. (2017) Inhibiting p21-Activated Kinase Induces Cell Death in Vestibular Schwannoma and Meningioma via Mitotic Catastrophe. Otol Neurotol 38:139-146
Mercado-Pimentel, M E; Igarashi, S; Dunn, A M et al. (2016) The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol 3:
Miller, Craig; Hanley, Jason Charles; Gernon, Thomas J et al. (2015) The submental island flap for reconstruction of temporal bone defects. Otol Neurotol 36:879-85
Bush, Matthew L; Burns, Sarah S; Oblinger, Janet et al. (2012) Treatment of vestibular schwannoma cells with ErbB inhibitors. Otol Neurotol 33:244-57
Jacob, Abraham; Oblinger, Janet; Bush, Matthew L et al. (2012) Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope 122:174-89
Bush, Matthew L; Oblinger, Janet; Brendel, Victoria et al. (2011) AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro Oncol 13:983-99