The goal of this proposed study is to provide the Principal Investigator, Jeanne M. Nervina, DMD, PhD, with the opportunity to develop as an independent researcher to complement her clinical training in orthodontics. Her training will be conducted under the guidance of the project's sponsors, Dr, Sotirios Tetradis and Dr. Harvey Herschman. Dr. Nervina's career goal is to pursue an academic career and establish herself as an independent dentist scientist conducting molecular biology research, mentoring students at all levels, and practicing orthodontics. Bone quality and quantity are important indicators of orofacial pathology and are predictors of outcome success for many dental surgical procedures. Uncoupled activity of bone forming osteoblasts and bone resorbing osteoclasts produce significant changes in bone metabolism. Our rationale is that understanding the molecular mechanisms of bone metabolism will greatly impact medicine and dentistry. Parathyroid hormone (PTH) has significant anabolic effects on bone, yet we do not understand the molecular mediators of these effects. We have identified receptor activity modifying protein 3 (RAMP3) as a PTH-induced primary gene in mouse osteoblasts. In preliminary studies we found that PTH also regulates RAMP1, but not RAMP2, mRNA levels in mouse osteoblasts. RAMP1, 2, and 3 are critical coactivators of calcitonin and calcitonin receptor-like receptors. Ligands for these receptors have significant anabolic effects on bone. We hypothesize that RAMP proteins participate in PTH's anabolic effect on osteoblasts. To test our hypothesis we propose three Specific Aims. (1) We will characterize PTH-induced RAMP1 and RAMP3 gene expression in mouse osteoblasts in vitro and in vivo. (2) Adenoviruses expressing RAMP1 and RAMP3 will be generated to assess the role of these genes in regulating osteoblast phenotype. (3) RAMP1 and RAMP3 transgenic mice will be generated using the COL1A1 promoter to target transgene expression to osteoblasts. Each mouse line will be studied for changes in bone phenotype at the gross, cellular, and molecular levels. These studies will help us understand the mechanisms of PTH-induced RAMP1 and RAMP3 gene expression and they will unveil the impact of these genes on osteoblast function.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Clinical Investigator Award (CIA) (K08)
Project #
Application #
Study Section
NIDCR Special Grants Review Committee (DSR)
Program Officer
Hardwick, Kevin S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Dentistry
Los Angeles
United States
Zip Code
Moldovan, Sanda M; Nervina, Jeanne M; Tetradis, Sotirios et al. (2009) Regulation of Nur77 gene expression by prostanoids in cementoblastic cells. Arch Oral Biol 54:412-9
Pham, L; Bezouglaia, O; Camargo, P M et al. (2007) Prostanoids induce egr1 gene expression in cementoblastic OCCM cells. J Periodontal Res 42:486-93
Nervina, Jeanne M; Magyar, Clara E; Pirih, Flavia Q et al. (2006) PGC-1alpha is induced by parathyroid hormone and coactivates Nurr1-mediated promoter activity in osteoblasts. Bone 39:1018-25
Nervina, Jeanne M; Camargo, Paulo M; Bezouglaia, Olga et al. (2006) Prostanoid- and interleukin-1-induced primary genes in cementoblastic cells. J Periodontol 77:1362-70
Phelps, E; Bezouglaia, O; Tetradis, S et al. (2005) Parathyroid hormone induces receptor activity modifying protein-3 (RAMP3) expression primarily via 3',5'-cyclic adenosine monophosphate signaling in osteoblasts. Calcif Tissue Int 77:96-103