The candidate is an academic gastrointestinal surgeon whose career objective is to become an independently funded clinician scientist. After graduating at the top of his class from college and medical school, the candidate trained in surgery at UCLA. He undertook a Research Fellowship during residency that provided preliminary experience in membrane biology and instilled a strong desire to become a clinician scientist and an innovator in the treatment of gallstones. To develop his research career, the candidate needs significantly more time for scientific pursuits as well as the mentorship of an experienced membrane biologist. His career development plan includes both didactic and practical studies of gallbladder ion transport with the supervision of two highly successful and innovative scientists at the University of Pittsburgh. The environment provided by the Laboratory of Epithelial Cell Biology is outstanding and has already trained numerous accomplished clinician scientists. The sponsors have dedicated their laboratory resources, equipment, and time to insure the candidate's success. The research plan focuses on one therapeutically promising aspect of gallstone pathogenesis: increased salt and water absorption by the gallbladder prior to gallstone formation. Increased electrolyte absorption excessively concentrates gallbladder bile and promotes the crystallization of cholesterol. The potential clinical relevance of increased gallbladder salt and water transport is dramatized by data showing that amiloride prevents the formation of gallstones in cholesterol-fed prairie dogs. Contrary to the paradigm for gallbladder transport described in stone-resistant animals, we now demonstrate electrogenic ion transport in human and prairie dog gallbladder. Alterations in electrogenic ion transport precede the formation of gallstones and cause absorption to increase, and the mechanism is unknown. We propose studies with three Specific Aims to test our hypothesis that electrogenic ion transport confers susceptibility to the formation of gallstones;
Aim 1 : Determine the mechanism for electrogenic ion transport in prairie dog gallbladder. Although prairie dogs are used extensively as a model of human disease, the basic mechanism for gallbladder ion transport in normal prairie dogs has not been established.
Aim 2 : Characterize alterations in gallbladder ion transport prior to the formation of gallstones. Using cholesterol-fed animals, we will test our hypothesis that alterations in channel-mediated ion transport stimulate electrolyte absorption and promote gallstones.
Aim 3 : Determine the mechanism for human gallbladder ion transport in health and disease. Given the high incidence of gallstones in patients with abnormal gallbladder ion transport, these studies will test our hypothesis that increased gallbladder electrolyte absorption is also a cause of gallstones in man. These studies are ideal for teaching the Principal Investigator critical new skills required for a successful research career as a clinician scientist in an era of increasingly sophisticated membrane biology.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Clinical Investigator Award (CIA) (K08)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Podskalny, Judith M,
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Moser, A James; Gangopadhyay, A; Bradbury, N A et al. (2007) Electrogenic bicarbonate secretion by prairie dog gallbladder. Am J Physiol Gastrointest Liver Physiol 292:G1683-94
D'Alessio, Matthew J; Rana, Abbas; Martin, John A et al. (2005) Surgical management of intraluminal duodenal diverticulum and coexisting anomalies. J Am Coll Surg 201:143-8
Schneider, James J; Shroff, Sahir; Moser, A James (2005) Palliative segmental duodenectomy for bleeding, erosive endometrial cancer. Gynecol Oncol 97:246-8
Maheshwari, Vivek; Moser, A James (2005) Current management of locally advanced pancreatic cancer. Nat Clin Pract Gastroenterol Hepatol 2:356-64