This NIH mentored Career Development Award proposal describes a five year training program for the candidate, a physician scientist with the long-term goal of becoming an independent academic investigator with a research focus on epithelial ion transport related to kidney physiology and diseases. To accomplish these goals the candidate and his mentors developed an integrated plan encompassing novel scientific ideas, advanced training in basic science research and a detailed career development plan. The candidate proposes to build on a background in basic research developed during his postdoctoral research and fellowship training, specifically on his previous findings in genetics and expression of Uromodulin (UMOD), a protein which if altered causes kidney stones and hypercalciuria in mice. Most of the tubular Ca2+ is reabsorbed in the proximal tubule by paracellular mechanisms. However, in the distal convoluted tubule (DCT) and connecting tubule (CNT) Ca2+ is absorbed via transepithelial transport by the Ca2+ channel TRPV5. Urinary analysis in mutant Umod mice suggests impaired calcium absorption in the DCT and CNT where TRPV5 is the most abundant calcium channel. TRPV5 is regulated by Klotho, an anti-aging protein. Klotho functions as a sialidase, exposing galactose-N-acetylglucosamine at N-glycosylated TRPV5 channels, which then bind to galectin-1, a ubiquitous lectin. This results in impairment of TRPV5 endocytosis and increased TRPV5 surface abundance. My preliminary data indicate that UMOD upregulates TRPV5 and that UMOD and Klotho work in the same pathway in this respect. This proposal seeks to improve the understanding how UMOD interferes with renal Ca2+ absorption.
My aims are to analyze what the molecular mechanism of TRPV5 upregulation by UMOD is;to examine the physiological role of UMOD in regulating renal Ca2+ excretion in vivo;and to examine the mechanism of TRPV5 co-regulation by UMOD and Klotho and test the significance in vivo. I will test my hypotheses utilizing electrophysiology, protein biochemistry and mouse genetics. I will analyze how UMOD increases TRPV5 activity by testing UMOD's impact on TRPV5 endocytosis, TRPV5 single channel open probability and conductance. I will test if decreased secretion of mutant UMOD may contribute to less TRPV5 activation thus causing hypercalciuria. I will test the significance of my in vitro findings in viv by analyzing TRPV5 expression and activity in isolated native tubules from mutant Umod and wild type animals. I will examine the mechanism how UMOD and Klotho co-regulate TRPV5. To analyze if UMOD and Klotho regulate renal Ca2+ absorption together in vivo I will test if Klotho overexpression can rescue hypercalciuria due to mutant UMOD. Crossed mutant Umod;overexpressing Klotho mice will be analyzed for renal Ca2+ excretion, TRPV5 expression and activity in the DCT/CNT. Results obtained by these experiments will improve the knowledge of hypercalciuria, a significant risk factor for kidney stones, and may contribute to the development of novel treatment strategies in nephrolithiasis.

Public Health Relevance

Elevated calcium levels in human urine, called hypercalciuria, are a significant risk factor for kidney stones. Mouse models carrying Uromodulin (Umod) mutations display significant hypercalciuria but only limited understanding about the function of UMOD exists. This proposal seeks to improve our knowledge how UMOD, the most abundant protein in urine, modifies calcium channels in the kidney in order to better treat kidney stones.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08DK095994-03
Application #
8683168
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Rankin, Tracy L
Project Start
2012-09-01
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Pediatrics
Type
Schools of Medicine
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75390
Nie, Mingzhu; Bal, Manjot S; Liu, Jie et al. (2018) Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J Biol Chem 293:16488-16502
Ellington, Natalie; Wolf, Matthias T F; Kasten, Jennifer et al. (2017) Omental Arteriopathy in Primary Atypical Hemolytic Uremic Syndrome. Int J Surg Pathol 25:515-517
Wolf, Matthias Tilmann Florian (2017) Inherited and acquired disorders of magnesium homeostasis. Curr Opin Pediatr 29:187-198
Braun, Daniela A; Rao, Jia; Mollet, Geraldine et al. (2017) Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 49:1529-1538
Nie, Mingzhu; Bal, Manjot S; Yang, Zhufeng et al. (2016) Mucin-1 Increases Renal TRPV5 Activity In Vitro, and Urinary Level Associates with Calcium Nephrolithiasis in Patients. J Am Soc Nephrol 27:3447-3458
Eckardt, Kai-Uwe; Alper, Seth L; Antignac, Corinne et al. (2015) Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management--A KDIGO consensus report. Kidney Int 88:676-83
Wolf, Matthias T F (2015) Nephronophthisis and related syndromes. Curr Opin Pediatr 27:201-11
Wolf, Matthias T F; An, Sung-Wan; Nie, Mingzhu et al. (2014) Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem 289:35849-57
Beck, Bodo B; Baasner, Anne; Buescher, Anja et al. (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 21:162-72
Wolf, Matthias T F; Wu, Xue-Ru; Huang, Chou-Long (2013) Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int 84:130-7