The immune system prevents reactivity against oneself; when this fails, autoimmune disease results. In pregnancy, the immune system also protects the fetus from the mother's immune system. When a mother develops preeclampsia, her immune system is overly active. Studies have shown that her cells react to her fetus's cells more than in normal pregnancies. This may represent rejection of the fetus. Two types of immune cells are especially important in preventing reactions against oneself and the fetus. We propose to evaluate these cells; both number and function, in preeclampsia. If confirmed, problems with these cells may be targets for treatment. In addition, cells exchanged between a woman and her fetus, which is a normal part of pregnancy, contribute to the ability of the immune system to maintain tolerance during pregnancy and later in life. Additional studies aim to understand how this exchange of cells influences pregnancy outcomes.

Public Health Relevance

The proposed studies seek to understand why preeclampsia, a disease unique to pregnancy, develops. Preeclampsia is one of the leading causes of death and disease for women and their children globally. Understanding factors that lead to preeclampsia may lead to new strategies to treat or prevent its occurrence.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Clinical Investigator Award (CIA) (K08)
Project #
Application #
Study Section
Biobehavioral and Behavioral Sciences Subcommittee (CHHD)
Program Officer
Ilekis, John V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Shree, R; Harrington, W E; Kanaan, S B et al. (2018) Fetal microchimerism by mode of delivery: a prospective cohort study. BJOG :
Kamper-Jørgensen, Mads; Gammill, Hilary S; Nelson, J Lee (2018) Preeclampsia and scleroderma: a prospective nationwide analysis. Acta Obstet Gynecol Scand 97:587-590
Kanaan, Sami B; Gammill, Hilary S; Harrington, Whitney E et al. (2017) Maternal microchimerism is prevalent in cord blood in memory T cells and other cell subsets, and persists post-transplant. Oncoimmunology 6:e1311436
Gammill, H S; Harrington, W E (2017) Microchimerism: Defining and redefining the prepregnancy context - A review. Placenta 60:130-133
Wallingford, Mary C; Gammill, Hilary S; Giachelli, Cecilia M (2016) Slc20a2 deficiency results in fetal growth restriction and placental calcification associated with thickened basement membranes and novel CD13 and laminin?1 expressing cells. Reprod Biol 16:13-26
Guthrie, Katherine A; Gammill, Hilary S; Kamper-Jørgensen, Mads et al. (2016) Statistical Methods for Unusual Count Data: Examples From Studies of Microchimerism. Am J Epidemiol 184:779-786
Snyder, Matthew W; Gammill, Hilary S; Shendure, Jay (2015) Copy-Number Variation and False Positive Results of Prenatal Screening. N Engl J Med 373:2585
Snyder, Matthew W; Simmons, LaVone E; Kitzman, Jacob O et al. (2015) Copy-number variation and false positive prenatal aneuploidy screening results. N Engl J Med 372:1639-45
Gammill, Hilary S; Milano, Filippo; Nelson, J Lee et al. (2015) Breastfeeding and Childhood Leukemia Incidence: Duplicate Data Inadvertently Included in the Meta-analysis and Consideration of Possible Confounders. JAMA Pediatr 169:1071
Lannon, Sophia M R; Guthrie, Katherine A; Vanderhoeven, Jeroen P et al. (2015) Uterine rupture risk after periviable cesarean delivery. Obstet Gynecol 125:1095-100

Showing the most recent 10 out of 22 publications