Airway hyperresponsiveness and mucous cell metaplasia are essential features of inflammatory airway diseases (including asthma and COPD), but the cellular and molecular pathways leading to these disease traits still need to be better defined. Previous work by others suggested that a goblet cell-specific member of the calcium activated chloride channel family of proteins (mClca3 in mouse and hCLCAl in human) is necessary and sufficient for allergen-induced airway hyperresponsiveness and goblet cell metaplasia in mice and is overexpresssed in allergic asthma in humans. However, we found that a new /nC/ca3-null mouse still fully develops these asthma traits after viral infection or allergen challenge. These and other preliminary results suggest functional redundancy in the CLCA gene family. Indeed, we find that the CLCA locus consists of 6 distinct genes in the mouse and 4 in the human, and each exhibits a high degree of intra- and inter-species sequence homology but a distinct pattern of expression in tissues. We therefore propose that select members of the CLCA family of proteins play tissue-specific but convergent roles in the development and maintenance of airway hyperresponsiveness and goblet cell metaplasia. Thus, we propose to: I. Determine the patterns of gene expression for mClca family members in the setting of experimental airway disease driven by viral infection or allergen challenge, using real-time quantitative RT-PCR assays to precisely monitor the levels of mC/ca family gene expression in wild-type and mClca3-null mice. Studies will be performed in vivo using our mouse models of viral bronchiolitis and allergen challenge and in vitro using primary-culture mouse airway epithelial cells grown at air-liquid interface and stimulated with cytokines (IL-4, IL-9, and IL-13) to induce goblet cell metaplasia. II. Determine the effects of selectively expressing mClca family members on experimental airway disease phenotypes (i.e.goblet cell metaplasia;and airway hyperresponsiveness) using adeno-associated virus (AAV) gene transfer vectors. In vivo studies will again be compared to the actions of mClca expression done in vitro using primary-culture mouse and/or human airway epithelial cells. III. Determine the effects of selectively blocking expression of mClca family members on experimental airway disease phenotypes driven by viral infection or allergen challenge, using AAV vectors to deliver antisense oligonucleotides that selectively inhibit mClca gene expression. This will be compared to effects of targeted mutagenesis (i.e., our mC/ca3-null mouse) and of treatment with taniflumate (an inhibitor of calcium-dependent chloride flux). In vivo studies will again be compared to the actions of these inhibitors in vitro using primary-culture mouse and/or human airway epithelial cells. These proposed experiments should serve to define CLCA function in experimental asthma and thereby provide for new therapeutic targets in humans with airway disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08HL083095-04
Application #
7746409
Study Section
Special Emphasis Panel (ZHL1-CSR-O (O1))
Program Officer
Rothgeb, Ann E
Project Start
2006-12-12
Project End
2011-11-30
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
4
Fiscal Year
2010
Total Cost
$120,572
Indirect Cost
Name
Washington University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Patel, Dhara A; Patel, Anand C; Nolan, William C et al. (2014) High-throughput screening normalized to biological response: application to antiviral drug discovery. J Biomol Screen 19:119-30
Byers, Derek E; Alexander-Brett, Jennifer; Patel, Anand C et al. (2013) Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest 123:3967-82
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T et al. (2012) Self-cleavage of human CLCA1 protein by a novel internal metalloprotease domain controls calcium-activated chloride channel activation. J Biol Chem 287:42138-49
Alevy, Yael G; Patel, Anand C; Romero, Arthur G et al. (2012) IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest 122:4555-68
Horani, Amjad; Druley, Todd E; Zariwala, Maimoona A et al. (2012) Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 91:685-93
Patel, Anand C; Brett, Tom J; Holtzman, Michael J (2009) The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 71:425-49
Holtzman, Michael J; Byers, Derek E; Benoit, Loralyn A et al. (2009) Immune pathways for translating viral infection into chronic airway disease. Adv Immunol 102:245-76
Patel, Anand C; Van Natta, Mark L; Tonascia, James et al. (2008) Effects of time, albuterol, and budesonide on the shape of the flow-volume loop in children with asthma. J Allergy Clin Immunol 122:781-787.e8
Patel, Anand C (2008) Basic science for the practicing physician: gene expression microarrays. Ann Allergy Asthma Immunol 101:325-32
Kim, Edy Y; Battaile, John T; Patel, Anand C et al. (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633-40