A 5 year training program for the development of a career in academic pulmonary is outlined in this proposal. The principal investigator (PI) has completed residency in internal medicine at the University of Chicago followed by a fellowship in pulmonary and critical care medicine at the University of Chicago. He is now an Instructor in the Section of Pulmonary and Critical Care, University of Chicago (effective July 1, 2008). He will expand upon his scientific skills through a unique program of training in cellular signaling. This program will promote command of the application of cellular signaling to the study of basic mechanisms of fibrotic human diseases, such as pulmonary fibrosis and bronchiolitis obliterans. Dr. Nickolai Dulin will mentor the principal investigator's scientific development. He is a well-established investigator in cell signaling and an outstanding mentor who is committed to the development of the PI into an independent clinician-scientist. Dr. Julian Solway, an outstanding physician-investigator who has successfully trained many clinician-scientists will serve as the Co-Mentor. He will provide expertise in academic and scientific career development. In addition, an advisory committee of accomplished scientists in cellular signaling, pulmonary physiology, and molecular biology will contribute to the scientific and career development. The research focus will be on the role of serum response factor (SRF) in mediating myofibroblast differentiation in the setting of pulmonary fibrosis. The Pis preliminary data shows that 1) SRF is required for myofibroblast differentiation induced by the profibrotic cytokine, TGF-beta, 2) that activators of PKA inhibits myofibroblast differentiation likely via inhibition of SRF, and 3) the stable prostacyclin agonist, iloprost, attenuates the development of pulmonary fibrosis in a murine model. Thus, the overall hypothesis is that TGF-beta stimulates myofibroblast differentiation through activation of serum response factor, and that TGF- beta-induced myofibroblast differentiation can be inhibited by targeting SRF activity both in cell culture and in vivo.

Public Health Relevance

My long-term objective is to understand the molecular mechanisms underlying the pathogenesis of pulmonary fibrosis, focusing on myofibroblast differentiation. Identification of these signaling pathways may lead to the development of new drug treatments for this progressive, fatal disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08HL093367-02
Application #
7802110
Study Section
Special Emphasis Panel (ZHL1-CSR-O (F1))
Program Officer
Colombini-Hatch, Sandra
Project Start
2009-04-09
Project End
2014-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
2
Fiscal Year
2010
Total Cost
$124,200
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Bernau, Ksenija; Torr, Elizabeth E; Evans, Michael D et al. (2017) Tensin 1 Is Essential for Myofibroblast Differentiation and Extracellular Matrix Formation. Am J Respir Cell Mol Biol 56:465-476
Esnault, Stephane; Bernau, Ksenija; Torr, Elizabeth E et al. (2017) RNA-sequencing analysis of lung primary fibroblast response to eosinophil-degranulation products predicts downstream effects on inflammation, tissue remodeling and lipid metabolism. Respir Res 18:188
Ferguson, Keith T; Torr, Elizabeth E; Bernau, Ksenija et al. (2017) The Novel mTOR Complex 1/2 Inhibitor P529 Inhibits Human Lung Myofibroblast Differentiation. J Cell Biochem 118:2241-2249
Annis, Douglas S; Ma, Hanqing; Balas, Danika M et al. (2015) Absence of Vitamin K-Dependent ?-Carboxylation in Human Periostin Extracted from Fibrotic Lung or Secreted from a Cell Line Engineered to Optimize ?-Carboxylation. PLoS One 10:e0135374
Torr, Elizabeth E; Ngam, Caitlyn R; Bernau, Ksenija et al. (2015) Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem 290:6951-61
Bernau, Ksenija; Ngam, Caitlyn; Torr, Elizabeth E et al. (2015) Megakaryoblastic leukemia-1 is required for the development of bleomycin-induced pulmonary fibrosis. Respir Res 16:45
Tilbury, Karissa; Hocker, James; Wen, Bruce L et al. (2014) Second harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic pulmonary fibrosis. J Biomed Opt 19:086014
Kach, Jacob; Sandbo, Nathan; La, Jennifer et al. (2014) Antifibrotic effects of noscapine through activation of prostaglandin E2 receptors and protein kinase A. J Biol Chem 289:7505-13
Kach, Jacob; Sandbo, Nathan; Sethakorn, Nan et al. (2013) Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am J Physiol Lung Cell Mol Physiol 304:L757-64
Sandbo, Nathan; Ngam, Caitlyn; Torr, Elizabeth et al. (2013) Control of myofibroblast differentiation by microtubule dynamics through a regulated localization of mDia2. J Biol Chem 288:15466-73

Showing the most recent 10 out of 14 publications