Basophils and mast cells represent an important source of several inflammatory mediators, many of which (e.g., histamine) are stored in the cells' cytoplasmic granules. Morphologic studies have demonstrated that basophils and/or mast cells are increased in numbers and/or exhibit activation during many different immunologic or pathologic processes in both experimental animals and man. Along with other lines of evidence, these observations indicate that basophils and mast cells participate in a wide variety of biological responses. Previous work in our laboratory has suggested that certain of the important biological functions of basophils and mast cells may be mediated by a bidirectional flow of small, membrane bound cytoplasmic vesicles between the plasma memberane and the cytoplasmic granules. Such functions include the internalization of ligands bound to the cell surface, the uptake (and, later, release) of potentially toxic exogenous basic compounds, and the sustained or low level release of granule-associated mediators. We now wish to test this model rigorously, with an approach that utilizes a new method of microwave energy-assisted ultrafast fixation recently developed in our laboratory, as well as ultrastructural cytochemistry/immunocytochemistry and computer-assisted morphometry. The role of cytoplasmic vesicles will be evaluated in the following phenomena: 1) The uptake, granule storage and release of horseradish peroxidase or eosinophil peroxidase by guinea pigs basophils and rat and mouse mast cells; (2) The stimulation of rat or mouse mast cells with gold-labeled monoclonal IgE and specific antigen, (and the relationship of such stimulation to internalization of IgE-antigen complexes); 3) The release of granule associated histamine (guinea pig basophils, and rat and mouse mast cells) or chymase (rat peritoneal cells) by various concentrations of degranulation stimuli, including IgE and antigen and certain basic compounds.
Login, G R; Schnitt, S J; Dvorak, A M (1987) Rapid microwave fixation of human tissues for light microscopic immunoperoxidase identification of diagnostically useful antigens. Lab Invest 57:585-91 |