In the hepatocyte, numerous genes are regulated by glucocorticoid hormones. Even though these genes are expressed in the liver and they all contain glucocorticoid response elements (GREs), their patterns of transcriptional response vary considerably. For example, some genes rapidly respond to glucocorticoid while others display a lag. In addition, cycloheximide abolishes the response to glucocorticoid in some, but not all genes. Thus, glucocorticoid regulation of transcription in hepatocytes may involve several different mechanisms, including interactions between the glucocorticoid receptor and several types of novel accessory factors which modulate the glucocorticoid response in a gene or a cell-specific fashion. Carbamyl phosphate synthetase-1 (CPS-- 1), is an example of a gene which shows a lag in its induction by glucocorticoid and whose induction is blocked by cycloheximide. These observations are consistent with the existence of accessory factors which modulate the glucocorticoid induction of CPS-1. Precedence for the existence of such factors has been demonstrated for the PEPCK gene, which displays almost identical glucocorticoid induction kinetics as CPS-1. The hypothesis that modulation of glucocorticoid regulation of the CPS-1 gene in hepatocytes requires one or more accessory factors, in addition to the glucocorticoid receptor, will be tested.
The specific aims are to: 1. Localize the Glucocorticoid Responsive Unit(s) (GRU) for the CPS-1 gene. 2. Examine the CPS-1 response to glucocorticoid in primary hepatocytes compared to H411E hepatoma cells to determine if malignant transformation alters the pattern of accessory factors. 3. Define and test the minimum GRE activity within the GRU. 4. Analyze the functional and biochemical interrelationships between accessory factors and the glucocorticoid receptor. 5. Characterize, isolate and clone the accessory factors. The identity of these accessory factors and their mechanism of interaction with the glucocorticoid receptor and transcriptional machinery is an exciting area for new investigation which could lead to a better understanding of steroid hormone regulation of gene expression. These studies have far reaching implications, possibly expanding our understanding of developmental or tissue-specific regulation of gene expression, mechanisms involving the role of glucocorticoid in sepsis or inflammation, and regulation of cellular growth at a more general level, including growth and benign or malignant tumor formation.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Physician Scientist Award (K11)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Lee, E; Chen, P; Rao, H et al. (1999) Effect of acute high dose dobutamine administration on serum thyrotrophin (TSH). Clin Endocrinol (Oxf) 50:487-92
Syed, M A; Thompson, M P; Pachucki, J et al. (1999) The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid 9:503-12
Pachucki, J; Burmeister, L A; Larsen, P R (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85:498-503
Zou, L; Burmeister, L A; Styren, S D et al. (1998) Up-regulation of type 2 iodothyronine deiodinase mRNA in reactive astrocytes following traumatic brain injury in the rat. J Neurochem 71:887-90
Burmeister, L A; Pachucki, J; St Germain, D L (1997) Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology 138:5231-7
Williams, K V; Nayak, S; Becker, D et al. (1997) Fifty years of experience with propylthiouracil-associated hepatotoxicity: what have we learned? J Clin Endocrinol Metab 82:1727-33
Pachucki, J; Burmeister, L A (1997) Evaluation and treatment of persistent thyroglobulinemia in patients with well-differentiated thyroid cancer. Eur J Endocrinol 137:254-61
Burmeister, L A; Sandberg, M; Carty, S E et al. (1997) Thyroid carcinoma found at parathyroidectomy: association with primary, secondary, and tertiary hyperparathyroidism. Cancer 79:1611-6
Burmeister, L A (1995) Reverse T3 does not reliably differentiate hypothyroid sick syndrome from euthyroid sick syndrome. Thyroid 5:435-41