Eukaryotic RNA polymerase I (Pol I) transcribes ribosomal RNA, key components of ribosomes. Pol I transcription accounts for the majority of the total RNA in cells, and its upregulation in human cells is a hallmark of cancer, making it an attractive therapeutic target for cancer. There are major gaps in our understanding of (1) the structural organization and architecture of Pol I transcription complexes, (2) the mechanism of Pol I transcription initiation and the molecular function of Pol I initiation factors, and (3) the regulation of Pol I activity by tumor suppressors and oncogenes. My primary career goals are to become an independent investigator at a top academic institution in the US, to establish a successful and well-funded research program, and to become a leader in the Pol I and transcription fields. To accomplish these goals, I will follow a career development plan that will expand my scientific and leadership skills through participation in grant writing, leadership, and laboratory management workshops, and by attending scientific meetings with topics on transcription, ribosome biogenesis, proteomics, and cancer. The long-term objective of this research proposal is to understand the mechanism of Pol I transcription and how it is dysregulated in cancer. The rationale is that understanding the Pol I transcription mechanism at the most basic and fundamental levels will translate to a better understanding of the connection between Pol I and cancer, leading to new cancer therapeutic strategies. My proposed research will use a conceptually and technically innovative cross-organismal and interdisciplinary approach that employs a combination of bioinformatics, computational, molecular, biochemical, genetic, proteomic, and structural methods in the yeast and human systems. My recent breakthrough and paradigm shifting discovery of a TFIIB-related Pol I initiation factor represents a significant and substantive departure from the status quo in the Pol I field. Guided by these preliminary studies, I will test three specific aims: (1) Determine the molecular architecture of te eukaryotic RNA polymerase I preinitiation complex, (2) Determine the molecular functions of the Pol I-specific initiation factors, and (3) Determine the mechanism by which the tumor suppressor p53 downregulates Pol I transcription. To accomplish these aims, I will use three well-established and complementary approaches to identify and map novel Pol I interactions in the context of a normal preinitiation complex environment. These methods include combined chemical crosslinking and mass spectrometry, site-specific UV-photocrosslinking, and site-specific hydroxyl radical protease footprinting that are new to the Pol I field. To complement these studies and to test the functional relevance of the observed interactions, I will use structural modeling and a combination of molecular, genetic, and biochemical assays to identify Pol I factor functions conserved from yeast to human. The proposed research is significant because it will lead to a detailed description of the Pol I transcription mechanism and provides a conceptual framework for understanding the link between Pol I and cancer. Ultimately, this work will illuminate key steps in Pol I transcription that can be used in targeted therapies.

Public Health Relevance

A multitude of human diseases that include genetic disorders and cancers are caused by mutations in transcription factors or their dysregulation. The overall goal of this project is to elucidate the mechanism of eukaryotic RNA polymerase I (Pol I) transcription and how it is dysregulated in cancer. The proposed studies will provide fundamental knowledge for understanding the basic molecular mechanism of Pol I transcription and will illuminate key steps that may be targeted in cancer therapeutics in order to enhance health and reduce the burden of illness.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Career Transition Award (K22)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Jakowlew, Sonia B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Upstate Medical University
Schools of Medicine
United States
Zip Code
Smith, Marissa L; Cui, Weidong; Jackobel, Ashleigh J et al. (2018) Reconstitution of RNA Polymerase I Upstream Activating Factor and the Roles of Histones H3 and H4 in Complex Assembly. J Mol Biol 430:641-654
Jackobel, Ashleigh J; Han, Yan; He, Yuan et al. (2018) Breaking the mold: structures of the RNA polymerase I transcription complex reveal a new path for initiation. Transcription 9:255-261
Han, Yan; Yan, Chunli; Nguyen, Thi Hoang Duong et al. (2017) Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. Elife 6:
Walker-Kopp, Nancy; Jackobel, Ashleigh J; Pannafino, Gianno N et al. (2017) Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilize RNA polymerase I and III complex integrity. Hum Mol Genet 26:4290-4300
Knutson, Bruce A; Smith, Marissa L; Walker-Kopp, Nancy et al. (2016) Super elongation complex contains a TFIIF-related subcomplex. Transcription 7:133-40