? ? Gallstone disease affects more than 30,000,000 Americans and results in more than 750,000 cholecystectomies in the United States annually. Gallstones can cause extrahepatic cholestasis by occluding the common bile duct. In bile, bile acids and phospholipids are important for the solubilization of cholesterol. When the composition of bile changes such that the ratio of bile acids to cholesterol decreases (either decreased bile acid synthesis and/or increased cholesterol secretion into bile), the probability for formation of cholesterol gallstones increases. The broad objective of this proposal is to understand how the transcription factor Nuclear Factor-E2-related factor 2 (Nrf2) regulates cholesterol and bile acid metabolism and disposition during cholestasis and during exposure to a high cholesterol diet. Preliminary studies show that liver transporter expression is different in livers from wild-type (WT) mice and Nrf2-null mice during cholestasis. Thus, Specific Aim 1 will expand upon these initial findings and determine whether drug disposition differs between WT and Nrf2-null mice during cholestasis. Importantly, preliminary studies also demonstrated that bile acid levels are decreased in liver and serum from Nrf2-null mice as compared to WT mice, suggesting that Nrf2 is important for bile acid synthesis. Therefore, Specific Aim 2 will determine the mechanism by which Nrf2 regulates bile acid levels in liver. Preliminary data also indicated that Nrf2-null mice exhibit increased formation of cholesterol gallstones when exposed to a high cholesterol diet, and studies in Specific Aim 3 will determine the mechanism by which Nrf2-null mice are more susceptible to gallstone formation. Studies in aim 3 will examine biliary cholesterol, bile acid, and phospholipid secretion as well as examine differences in heptic expression of genes for cholesterol and bile acid synthesis, metabolism, and disposition. Together, the proposed studies will provide novel information regarding liver regulation of cholesterol and bile acids and provide valuable insight into the pathogenesis of gallstone formation. ? ? ?

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Career Transition Award (K22)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-JAB-A (K1))
Program Officer
Shreffler, Carol K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rhode Island
Schools of Pharmacy
United States
Zip Code
Shimpi, Prajakta C; More, Vijay R; Paranjpe, Maneesha et al. (2017) Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease. Environ Health Perspect 125:087005
Yalcin, Emine B; Kulkarni, Supriya R; Slitt, Angela L et al. (2016) Bisphenol A sulfonation is impaired in metabolic and liver disease. Toxicol Appl Pharmacol 292:75-84
Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James et al. (2016) Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression. Drug Metab Dispos 44:518-26
Xu, Jialin; Shimpi, Prajakta; Armstrong, Laura et al. (2016) PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway. Toxicol Appl Pharmacol 290:21-30
Nahar, Pragati P; Slitt, Angela L; Seeram, Navindra P (2015) Anti-Inflammatory Effects of Novel Standardized Solid Lipid Curcumin Formulations. J Med Food 18:786-92
Xu, Jialin; Donepudi, Ajay C; More, Vijay R et al. (2015) Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice. Obesity (Silver Spring) 23:335-44
Kulkarni, Supriya R; Donepudi, Ajay C; Xu, Jialin et al. (2014) Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal 20:15-30
Xu, Jialin; Donepudi, Ajay C; Moscovitz, Jamie E et al. (2013) Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue. PLoS One 8:e79841
Chen, Yuan; Song, Xiulong; Valanejad, Leila et al. (2013) Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 57:1530-41
More, Vijay R; Xu, Jialin; Shimpi, Prajakta C et al. (2013) Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic Biol Med 61:85-94

Showing the most recent 10 out of 21 publications