A wealth of evidence suggests that the immune system, specifically T cells, can recognize and destroy malignant cells. However, despite adequate priming of tumor-specific T cells, tumor regression has rarely occurred in vaccine or adoptive cell therapy trials to date. These observations suggest that immune suppressive mechanisms in the tumor microenvironment may dominate and allow tumor escape. Research suggests that when such mechanisms are reversed, improved anti-tumor responses can occur. In a murine adoptive immunotherapy model, Dr. Kline has pursued strategies to reverse two putative inhibitory mechanisms: T cell anergy and regulatory T cells. He has found that T cell anergy can be reversed through the process of lymphopenia-induced homeostatic proliferation and that regulatory T cells can be removed prior to the adoptive transfer of bulk T cells into lymphopenic hosts. When homeostatic proliferation is combined with regulatory T cell depletion, potent tumor rejection occurs. These results have prompted Dr. Kline to develop a phase I protocol to test the effectiveness of this strategy in cancer patients. During the proposed award period, Dr. Kline proposes to investigate the effectiveness of total body irradiation in inducing lymphopenia in cancer patients, and to determine whether homeostatic proliferation of autologous polyclonal T cells depleted of regulatory T cells occurs following transfer into such irradiated hosts. Analysis of safety, in particular focusing on autoimmunity, will be pursued. An additional goal is to determine if this approach is associated with objective tumor responses. This research, if successful, could serve as a platform for future clinical trials and may have a significant impact on the way in which novel cancer immunotherapeutic strategies are developed and delivered. Lastly, a continued exploration of other inhibitory tumor escape mechanisms will ensue in the laboratory setting. Overall, this research may generate significant findings with important ramifications to public health, as it may offer a new approach to the treatment of patients with advance malignant diseases, who otherwise have a limited number of therapeutic options, and a universally poor outcome. Enhancing on his early training in both clinical and basic scientific research, Dr. Kline expects to build the necessary expertise required for a career in translational cancer immunotherapy research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23CA133196-02
Application #
7634508
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
2
Fiscal Year
2009
Total Cost
$129,843
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Chen, Xiufen; Fosco, Dominick; Kline, Douglas E et al. (2014) PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol 44:2603-16
Zhang, Long; Chen, Xiufen; Liu, Xiao et al. (2013) CD40 ligation reverses T cell tolerance in acute myeloid leukemia. J Clin Invest 123:1999-2010
Kline, Justin; Zhang, Long; Battaglia, Lauren et al. (2012) Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. J Immunol 188:2630-42
Poiré, Xavier; Kline, Justin; Grinblatt, David et al. (2010) Phase II study of immunomodulation with granulocyte-macrophage colony-stimulating factor, interleukin-2, and rituximab following autologous stem cell transplant in patients with relapsed or refractory lymphomas. Leuk Lymphoma 51:1241-50
Zhang, Long; Gajewski, Thomas F; Kline, Justin (2009) PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114:1545-52
Driessens, Gregory; Kline, Justin; Gajewski, Thomas F (2009) Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev 229:126-44