During expressive speech, acoustic stimuli from both self-generated and environmental sound sources are continually processed within the auditory system. This information is used to adjust and optimize speech output through a poorly characterized feedback network. This network is thought to be dysfunctional in a variety of speech disorders, including stuttering, and may be impaired in some patients with psychoses. Despite the importance of this neural system, little is known about how auditory cortex functions when humans vocalize. In this proposal I plan to study this system using invasive experimental methods in epilepsy surgery patient volunteers. By using direct electrophysiologic recording, stimulation techniques, and reversible focal cooling, it is feasible to obtain information about the functional organization of human auditory cortex during vocalization that cannot be obtained using non-invasive methods.
My specific aims are to 1) identify and characterize differences in auditory evoked responses recorded during vocalization and when these vocalizations are played back, 2) characterize how auditory feedback alterations during vocalization changes activity recorded from auditory cortex, 3) test the hypothesis that frontal lobe speech areas are functionally connected to the auditory cortical fields that demonstrate vocalization-induced changes in sound processing, and 4) use a cortical cooling method to reversibly deactivate frontal lobe sites and examine how this affects speech sound processing in functionally connected temporal lobe sites during vocalization. This research will be carried out in the context of a comprehensive career development program. I am fortunate to have experienced and committed mentors who are experts in areas relevant to this project. I also will have full access to the optimal resources needed for conducting human brain physiology research. I will participate in formal coursework, directed study and seminars that will further my objective of acquiring the scientific skills necessary to become an independent neurosurgeon-scientist.

Public Health Relevance

This project will further our understanding of brain mechanisms involved in human vocalization. These mechanisms are poorly understood and may be abnormal in certain speech disorders and psychoses.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23DC009589-02
Application #
7790706
Study Section
Special Emphasis Panel (ZDC1-SRB-L (47))
Program Officer
Sklare, Dan
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
2
Fiscal Year
2010
Total Cost
$221,562
Indirect Cost
Name
University of Iowa
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Katlowitz, Kalman A; Oya, Hiroyuki; Howard 3rd, Matthew A et al. (2017) Paradoxical vocal changes in a trained singer by focally cooling the right superior temporal gyrus. Cortex 89:111-119
Simonyan, Kristina; Ackermann, Hermann; Chang, Edward F et al. (2016) New Developments in Understanding the Complexity of Human Speech Production. J Neurosci 36:11440-11448
Long, Michael A; Katlowitz, Kalman A; Svirsky, Mario A et al. (2016) Functional Segregation of Cortical Regions Underlying Speech Timing and Articulation. Neuron 89:1187-1193
Behroozmand, Roozbeh; Oya, Hiroyuki; Nourski, Kirill V et al. (2016) Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus. J Neurosci 36:2302-15
Kingyon, J; Behroozmand, R; Kelley, R et al. (2015) High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control. Neuroscience 305:15-25
Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R et al. (2015) Sensory-motor networks involved in speech production and motor control: an fMRI study. Neuroimage 109:418-28
Manes, Jordan L; Parkinson, Amy L; Larson, Charles R et al. (2014) Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: a meta-analytic connectivity study. Hum Brain Mapp 35:3499-516
Greenlee, Jeremy D W; Behroozmand, Roozbeh; Nourski, Kirill V et al. (2014) Using speech and electrocorticography to map human auditory cortex. Conf Proc IEEE Eng Med Biol Soc 2014:6798-801
Garell, P C; Bakken, H; Greenlee, J D W et al. (2013) Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human. Cereb Cortex 23:2309-21
Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R et al. (2013) Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex. PLoS One 8:e60783

Showing the most recent 10 out of 12 publications