The goal of this proposal is to foster Dr. Chiara Giannarelli's development as an independent clinical investigator in translational cardiovascular research. Dr. Giannarelli will use a panel of molecular tools to address biological questions with the objective of translating laboratory-based findings into potential healthcare strategies. The proposed studies will be conducted in the laboratories of the Cardiovascular Institute of the Mount Sinai School of Medicine (MSSM). Dr. Giannarelli proposes to undertake a structured program involving didactic courses and research experiences. The Candidate will be mentored by Drs. Valentin Fuster, Roger Hajjar and Juan Badimon. This triumvirate has a combined record of outstanding accomplishments in research and training. The Cardiovascular Research Program involves basic and translational research focused on the cellular and molecular pathways triggering the initiation, progression and rupture of atherosclerotic lesions. Recent findings suggest that increased neovascularization of atherosclerotic plaques is a critical process to lesion growth, instability, rupture and cardiovascular clinical manifestations. Therefore, the targeted inhibition of plaque angiogenesis is a potential novel therapeutic approach toward plaque stabilization and prevention of cardiovascular events. In preliminary experiments, the Candidate has profiled the biological activity of alternatively spliced Tissue factor (asTF) as a potential angiogenic factor with potential impact in atherosclerosis. The overall aim is to establish a relationship between asTF, and plaque neovascularization, growth and instability.
In Specific Aim 1 the Candidate will establish the clinical relevance of asTF in promoting intraplaque neovascularization, plaque instability and cerebrovascular events in two cohorts of patients: 1) patients with clinically stable and 2) patients with clinically unstable carotid disease undergoing carotid endartherectomy.
Specific Aim 2 will test the hypothesis that asTF is differently expressed in various cell types within atherosclerotic plaques from patients with stable or unstable carotid disease. The Candidate employs a panel of techniques, such as Laser Capture Microdissection and Proteomic Technologies to establish a molecular signature at the single cell level.
In Specific Aim 3 the Candidate will study expression of asTF in monocyte sub-populations in patients with stable and unstable coronary and carotid disease. This proposal outlines a novel paradigm of atherosclerosis as an angiogenic-dependent disease in which neovascularization of plaque is intimately involved. Elucidating the role of asTF as novel pro-angiogenic factor and identifying novel pathway(s) relevant for neovascularization in human atherosclerotic disease could yield the discovery of novel biomarkers and therapeutic targets of plaque instability leading to clinical events.

Public Health Relevance

Neovascularization of atherosclerotic plaques contributes to progression of atherosclerosis. Identification of novel pathways underlying neovascularization is a critical step towards development of novel therapies for this disease. In this application, we will characterize a highly angiogenic isoform of TF (asTF) potentially involved in atherosclerosis in humans.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
1K23HL111339-01A1
Application #
8443278
Study Section
Special Emphasis Panel (ZHL1-CSR-X (O1))
Program Officer
Scott, Jane
Project Start
2013-09-01
Project End
2018-05-31
Budget Start
2013-09-01
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$142,340
Indirect Cost
$10,544
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Giannarelli, Chiara; Fernandez, Dawn M (2018) Manipulating Macrophage Polarization to Fix the Broken Heart: Challenges and Hopes. J Am Coll Cardiol 72:905-907
Franzén, Oscar; Ermel, Raili; Sukhavasi, Katyayani et al. (2018) Global analysis of A-to-I RNA editing reveals association with common disease variants. PeerJ 6:e4466
Fernandez, Dawn M; Clemente, Jose C; Giannarelli, Chiara (2018) Physical Activity, Immune System, and the Microbiome in Cardiovascular Disease. Front Physiol 9:763
Williams, Jesse W; Giannarelli, Chiara; Rahman, Adeeb et al. (2018) Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease: JACC Macrophage in CVD Series (Part 1). J Am Coll Cardiol 72:2166-2180
Bansilal, Sameer; Vedanthan, Rajesh; Kovacic, Jason C et al. (2017) Rationale and Design of Family-Based Approach in a Minority Community Integrating Systems-Biology for Promotion of Health (FAMILIA). Am Heart J 187:170-181
Giannarelli, Chiara; Rodriguez, David T; Zafar, M Urooj et al. (2017) Susceptibility to chronic social stress increases plaque progression, vulnerability and platelet activation. Thromb Haemost 117:816-818
Bruno, Rosa Maria; Cartoni, Giulia; Stea, Francesco et al. (2017) Carotid and aortic stiffness in essential hypertension and their relation with target organ damage: the CATOD study. J Hypertens 35:310-318
Talukdar, Husain A; Foroughi Asl, Hassan; Jain, Rajeev K et al. (2016) Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Syst 2:196-208
Franzén, Oscar; Ermel, Raili; Cohain, Ariella et al. (2016) Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353:827-30
Fruzzetti, Franca; Ghiadoni, Lorenzo; Virdis, Agostino et al. (2016) Adolescents with Classical Polycystic Ovary Syndrome Have Alterations in the Surrogate Markers of Cardiovascular Disease but Not in the Endothelial Function. The Possible Benefits of Metformin. J Pediatr Adolesc Gynecol 29:489-495

Showing the most recent 10 out of 17 publications