My goal for the K25 award is to establish myself as an independent neuroimaging researcher with expertise in brain network analysis and an integral member of multidisciplinary research teams devoted to addressing diseases of the brain. Attaining these objectives will require focused didactic training and research guidance. Research We will develop new methodology to improve whole-brain connectivity analyses of normal and abnormal brain function. The launching of the Human Connectome Project by the NIH in 2009 underscores the importance of whole-brain connectivity analyses. Appropriately conducting these analyses is paramount in our understanding normal brain function as well as alterations due to conditions such as aging, dyslexia, and substance abuse. Before we can glean useful information from functional brain network differences in these conditions, methods need to be developed in order to permit 1) assessing several network properties simultaneously while also accounting for the complex dependence structure of the networks; 2) making predictions about the presence and strength (weight) of connections between brain regions based on disease status; 3) determining whether task related changes in brain networks are associated with clinical outcomes. The novel methods proposed here will address these needs, providing more appropriate techniques for the emerging area of whole-brain connectivity analysis. This research, along with my proposed training experiences and strong mentoring team, will facilitate my progression toward becoming an independent neuroimaging researcher with expertise in brain network analysis and enable me to make unique contributions to brain research. Training The proposed training plan consists of four elements: 1) a didactic component aimed at establishing a basic foundation in computational neuroscience and image analysis; 2) career guidance in methodological development and collaborative neuroimaging research through planned on and off-site mentoring by neuroscientists and network and neuroimaging statisticians; 3) conducting innovative research utilizing the gained neuroscientific and image analytic knowledge and previous statistical training; and 4) participating in the exchange of ideas in statistics and the neurosciences through conference and workshop attendance. The planned training activities will focus on deepening my understanding of the brain as a complex system, enabling me to reasonably model and evaluate this system within its biological context. The combination of my knowledge in network-based brain imaging statistics, computational neuroscience, and image analysis will be a valuable asset that will not be confined to a single brain disorder. While the data analyses proposed here will focus on aging and brain degeneration, dyslexia, and substance abuse, the skills and knowledge that I will gain will position me to collaborate with investigators that study a broad range of clinical brain disorders.

Public Health Relevance

My goal for the K25 award is to establish myself as an independent neuroimaging researcher with expertise in brain network analysis and an integral member of multidisciplinary research teams devoted to addressing diseases of the brain. The training activities will focus on deepening my understanding of the brain as a complex system, enabling me to reasonably model and evaluate this system in a biologically meaningful way. The research activities will focus on developing new methodology and modifying existing methods in order to improve whole-brain connectivity analyses of normal and abnormal brain function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Mentored Quantitative Research Career Development Award (K25)
Project #
5K25EB012236-04
Application #
8916717
Study Section
Special Emphasis Panel (ZEB1-OSR-B (M2))
Program Officer
Erim, Zeynep
Project Start
2012-09-01
Project End
2017-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
4
Fiscal Year
2015
Total Cost
$157,567
Indirect Cost
$11,672
Name
Wake Forest University Health Sciences
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Solo, Victor; Poline, Jean-Baptiste; Lindquist, Martin A et al. (2018) Connectivity in fMRI: Blind Spots and Breakthroughs. IEEE Trans Med Imaging 37:1537-1550
Shaltout, Hossam A; Lee, Sung W; Tegeler, Catherine L et al. (2018) Improvements in Heart Rate Variability, Baroreflex Sensitivity, and Sleep After Use of Closed-Loop Allostatic Neurotechnology by a Heterogeneous Cohort. Front Public Health 6:116
Mokhtari, Fatemeh; Rejeski, W Jack; Zhu, Yingying et al. (2018) Dynamic fMRI networks predict success in a behavioral weight loss program among older adults. Neuroimage 173:421-433
Bahrami, Mohsen; Laurienti, Paul J; Quandt, Sara A et al. (2017) The impacts of pesticide and nicotine exposures on functional brain networks in Latino immigrant workers. Neurotoxicology 62:138-150
Tegeler, Catherine L; Gerdes, Lee; Shaltout, Hossam A et al. (2017) Successful use of closed-loop allostatic neurotechnology for post-traumatic stress symptoms in military personnel: self-reported and autonomic improvements. Mil Med Res 4:38
Tegeler, Charles H; Cook, Jared F; Tegeler, Catherine L et al. (2017) Clinical, hemispheric, and autonomic changes associated with use of closed-loop, allostatic neurotechnology by a case series of individuals with self-reported symptoms of post-traumatic stress. BMC Psychiatry 17:141
Casanova, Ramon; Saldana, Santiago; Simpson, Sean L et al. (2016) Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning. PLoS One 11:e0163942
Mayhugh, Rhiannon E; Moussa, Malaak N; Simpson, Sean L et al. (2016) Moderate-Heavy Alcohol Consumption Lifestyle in Older Adults Is Associated with Altered Central Executive Network Community Structure during Cognitive Task. PLoS One 11:e0160214
Tegeler, Charles H; Tegeler, Catherine L; Cook, Jared F et al. (2016) A Preliminary Study of the Effectiveness of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology in the Treatment of Athletes with Persisting Post-concussion Symptoms. Sports Med Open 2:39
Simpson, Sean L; Laurienti, Paul J (2016) Disentangling Brain Graphs: A Note on the Conflation of Network and Connectivity Analyses. Brain Connect 6:95-8

Showing the most recent 10 out of 26 publications