Statistical Methods for Genomic Dissection of Cardiovascular Diseases Abstract This mentored career development grant application proposes a training program to integrate Dr. Sung's previous research in statistical genetics into cardiovascular disease (CVD). Her long-term career goal is to establish herself as an independent statistician in CVD genetics research so that she can more effectively participate in multi-disciplinary research programs with clinical and translational CVD researchers and be better equipped to develop and apply statistical methods to contribute more meaningfully to the field of CVD genetics. This will be achieved through building a strong foundation in the clinical and research aspects of CVD and enhancing her understanding of genomics and whole-genome sequence data. Dr. Sung's mentoring team consists of multi-disciplinary researchers with a strong research track record. Complex cardiometabolic traits including hypertension, dyslipidemia, and diabetes contribute to CVD, the leading cause of mortality and morbidity in the industrialized world. Genome-wide association studies (GWAS) have led to many exciting discoveries. However, most GWAS discoveries have not been translated to clinical care because the functional mechanisms underlying the genetic associations remain elusive and the roles played by the environment in modulating these associations remain poorly defined. The research objective of this K25 application is to decipher the genetic and environmental architecture of cardiometabolic traits by incorporating GxE interactions and regulatory annotation information. We hypothesize that joint analysis of the environment, regulatory variants and coding variants will enhance the discovery of putative genetic variants and the functional mechanisms underlying cardiometabolic traits. To evaluate this hypothesis, we aim to identify genetic variants involving GxE interactions and identify putative functional variants by incorporating ENCODE regulation information.

Public Health Relevance

Understanding the genetic and environmental architecture of cardiometabolic traits will contribute to our knowledge of the pathogenesis of cardiovascular disease which may have important implications for personalized medicine.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Mentored Quantitative Research Career Development Award (K25)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-X (M1))
Program Officer
Papanicolaou, George
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Biostatistics & Other Math Sci
Schools of Medicine
Saint Louis
United States
Zip Code
Cushing, Kelly C; Chiplunker, Adeeti; Li, Allie et al. (2018) Smoking Interacts With CHRNA5, a Nicotinic Acetylcholine Receptor Subunit Gene, to Influence the Risk of IBD-Related Surgery. Inflamm Bowel Dis 24:1057-1064
Sung, Yun J (see original citation for additional authors) (2018) A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. Am J Hum Genet 102:375-400
Sung, Yun Ju; Winkler, Thomas W; Manning, Alisa K et al. (2016) An Empirical Comparison of Joint and Stratified Frameworks for Studying G × E Interactions: Systolic Blood Pressure and Smoking in the CHARGE Gene-Lifestyle Interactions Working Group. Genet Epidemiol 40:404-15
Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa et al. (2016) Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure. Genet Epidemiol 40:73-80
Sung, Y J; Pérusse, L; Sarzynski, M A et al. (2016) Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes (Lond) 40:662-74
Sung, Yun Ju; Basson, Jacob; Cheng, Nuo et al. (2015) The role of rare variants in systolic blood pressure: analysis of ExomeChip data in HyperGEN African Americans. Hum Hered 79:20-7
Basson, Jacob; Sung, Yun Ju; Fuentes, Lisa de Las et al. (2015) Influence of Smoking Status and Intensity on Discovery of Blood Pressure Loci Through Gene-Smoking Interactions. Genet Epidemiol 39:480-488