Duchenne muscular dystrophy is a common genetic disorder resulting from mutations within the dystrophin gene. It is likely that the dystrophic phenotype does not result directly from alteration to the myofibrillar structures, rather it is a disruption of sarcolemmal membrane integrity that normally confers tight control of intracellular Ca homeostasis, which leads to elevated intracellular Ca and eventual muscle degeneration. The pathophysiological mechanism responsible for elevation of intracellular Ca levels is not clear, however our recent findings suggest that store-operated Ca entry (SOCE) linked to uncontrolled Ca spark activity may contribute to the aberrant Ca influx observed in dystrophic muscle. While the mechanism of SOCE activation is still a matter of intensive study, it has been recently determined that the Ca insensitive phospholipase A2 (iPLA2) is an important mediator of SOCE. The focus of this project is to test the hypothesis that aberrant Ca spark activity acts as a trigger for SOCE and thus induces a dystrophic cascade in mammalian skeletal muscle through a pathway that involves IPLA2 mediated signaling. We will test this with three specific aims:
Aim 1 : To establish induced Ca sparks as a trigger for SOCE in healthy and dystrophic muscle. We will utilize multiple methods for measurement of SOCE to examine alteration to Ca : entry in dystrophic fiber. Patch-clamp measurement and modulation of Ca influx will provide insight into SR Ca release and the activation of SOCE in dystrophic fibers.
Aim 2 : Determine the contribution of IPLA2 activity to Ca influx in muscular dystrophy. We will examine the altered characteristics of JPLA2 function in dystrophic muscle using various in vitro molecular and pharmacological methods.
Aim 3 : To elucidate if SOCE facilitates the dystrophic cascade in skeletal muscle. Due to the inability to assess changes in the dystrophic phenotype in skeletal muscle we will modulate SOCE in dystrophic animals and assay changes in dystrophic phenotypes. This project will contribute to our understanding of how muscle damage occurs in cases of Duchenne muscular dystrophy (DMD), the most common genetic disease in the United States. Our experiments will establish that defects in how calcium enters muscle cells result in the development of DMD. Such knowledge will suggest new methods to treat DMD, some of which will be tested on experimental animals in this study. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Career Transition Award (K99)
Project #
1K99AR054793-01A2
Application #
7532263
Study Section
Special Emphasis Panel (ZAR1-MLB-J (M3))
Program Officer
Boyce, Amanda T
Project Start
2008-07-09
Project End
2013-04-30
Budget Start
2008-07-09
Budget End
2009-04-30
Support Year
1
Fiscal Year
2008
Total Cost
$79,731
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Physiology
Type
Schools of Medicine
DUNS #
617022384
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui et al. (2013) Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle. J Biol Chem 288:2103-9
Zhao, Xiaoli; Moloughney, Joseph G; Zhang, Sai et al. (2012) Orai1 mediates exacerbated Ca(2+) entry in dystrophic skeletal muscle. PLoS One 7:e49862
Moloughney, Joseph G; Weisleder, Noah (2012) Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Pat Biotechnol 6:200-11
Weisleder, Noah; Zhou, Jingsong; Ma, Jianjie (2012) Detection of calcium sparks in intact and permeabilized skeletal muscle fibers. Methods Mol Biol 798:395-410
Ko, Jae-Kyun; Choi, Kyoung-Han; Zhao, Xiaoli et al. (2011) A versatile single-plasmid system for tissue-specific and inducible control of gene expression in transgenic mice. FASEB J 25:2638-49
Touchberry, Chad D; Elmore, Chris J; Nguyen, Tien M et al. (2011) Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun 416:45-50
Tjondrokoesoemo, Andoria; Park, Ki Ho; Ferrante, Christopher et al. (2011) Disrupted membrane structure and intracellular Ca²? signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS One 6:e25740
Yi, Jianxun; Ma, Changling; Li, Yan et al. (2011) Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem 286:32436-43
Ko, Jae-Kyun; Choi, Kyoung-Han; Peng, Jun et al. (2011) Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. J Biol Chem 286:9038-48
Belakavadi, Madesh; Saunders, Jason; Weisleder, Noah et al. (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151:2946-56

Showing the most recent 10 out of 11 publications