Ovarian cancer is the deadliest gynecological disease in the United States, which is due in part to the lack of understanding on how the cancer becomes resistant to chemotherapies. Established (cisplatin) and emerging anti-cancer therapeutics (PARPi) effectiveness rely heavily on intrinsic DNA damage response. Recent reports have observed that cisplatin-resistant cancer cells are cross-resistant to PARP inhibitors. Preliminary experiments in ovarian cancer indicate that aberrant Wnt signaling contributes to resistant to both cisplatin and PARPi by modulating the non-homologous end-joining (NHEJ) pathway. The overall goals of the proposed research is to elucidate the mechanism of Wnt-dependent PARPi/cisplatin resistant in ovarian cancer and to develop a translational approach to re-sensitize tumor cells. During the mentored K99 phase, I will work to clearly establish the impact aberrant Wnt signaling (e.g. loss off Wnt5a) and NHEJ has in conveying or maintaining chemoresistance in ovarian cancer cells. I will then determine the in vivo significance of inhibiting canonical Wnt and NHEJ pathways in the context of resistant disease. I will pursue the establishment of pre- clinical models of ovarian cancer (patient-derived xenograft) to determine if the modulation of Wnt signaling or NHEJ could be translated into the clinical setting to aid in the treatment of chemoresistant ovarian cancer. Excitingly, the proposed work will contribute to the elucidation of the resistant process and could have a direct impact on future therapeutic strategies for ovarian cancer.

Public Health Relevance

Ovarian cancer is the deadliest gynecological disease in the United States. Over 75% of all ovarian cancer treated with traditional chemotherapies will recur and be resistant to anti-cancer drugs (cisplatin). There is an urgent need to better understand how ovarian cancer becomes resistant and how to clinically treat patients with resistant disease. The work detailed in this proposal would help to answer these critical questions. Specifically, I will examine traditional (cisplatin) and emerging (PARP inhibitors) ovarian cancer therapies to determine cellular properties involved in conveying and maintaining resistance. In addition, the work examines a potential novel therapeutic approach in dealing with chemoresistant ovarian cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Career Transition Award (K99)
Project #
1K99CA194318-01
Application #
8869244
Study Section
Subcommittee G - Education (NCI)
Program Officer
Schmidt, Michael K
Project Start
2015-09-01
Project End
2017-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
1
Fiscal Year
2015
Total Cost
$115,014
Indirect Cost
$8,520
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Karakashev, Sergey; Zhu, Hengrui; Wu, Shuai et al. (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9:631
Karakashev, Sergey; Zhu, Hengrui; Yokoyama, Yuhki et al. (2017) BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Rep 21:3398-3405
Bitler, Benjamin G; Wu, Shuai; Park, Pyoung Hwa et al. (2017) ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol 19:962-973
Yokoyama, Yuhki; Zhu, Hengrui; Lee, Jeong Heon et al. (2016) BET Inhibitors Suppress ALDH Activity by Targeting ALDH1A1 Super-Enhancer in Ovarian Cancer. Cancer Res 76:6320-6330
Zhu, Hengrui; Bengsch, Fee; Svoronos, Nikolaos et al. (2016) BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression. Cell Rep 16:2829-2837
Goldman, Aaron R; Bitler, Benjamin G; Schug, Zachary et al. (2016) The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level. Mol Cell Proteomics 15:3348-3360
Aird, Katherine M; Iwasaki, Osamu; Kossenkov, Andrew V et al. (2016) HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J Cell Biol 215:325-334
Wu, Shuai; Zhang, Rugang; Bitler, Benjamin G (2016) Arid1a controls tissue regeneration. Stem Cell Investig 3:35
Zhu, Hengrui; Ren, Shancheng; Bitler, Benjamin G et al. (2015) SPOP E3 Ubiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Rep 13:1183-1193