This proposal describes a five-year research and career development program to prepare Dr. Hamed Arami for a career as an independent investigator. This program will build upon Dr. Arami?s multidisciplinary background as a bioengineer scientist, trained in nanomedicine and basic cancer imaging, by providing expertise in brain cancer biology and image-guided therapy of brain tumors using Magnetic Particle Imaging (MPI). The PI will be mentored at Stanford Medical School by Drs. Sanjiv S. Gambhir (Main mentor, basic cancer biology, cancer pathology and cancer nanotechnology), Heike Daldrup-Link (co-mentor, magnetic nanomedicine, imaging and therapeutics), Max Wintermark (co-mentor, neuroimaging and brain MPI), Melanie Hayden (co-mentor, neurosurgery and neurology) and Bob Sinclair (co-mentor, nanomaterials characterization). Treatment of malignant primary brain tumors particularly glioblastoma multiforme (GBM) is challenging because of GBM resistant to chemotherapy and radiotherapy. Also, there are different types of GBM tumors that are not operable due to their locations in the brain (e.g. deep brain regions). In addition, routine GBM imaging in clinics are based on using gadolinium-based magnetic resonance imaging contrast agents. However, using these gadolinium-based contrast agents raises major concerns for GBM patients suffering from chronic kidney disease, which can be resolved by using nanoparticle contrast agents that do not show any renal clearance due to their larger size. The overall goal of the proposed research is to use MPI as a two-armed and high-resolution approach for safer imaging and magnetothermal therapy of the GBM. Four types of brain tumors with different levels of aggressiveness will be studied to identify the feasibility of the proposed method in different brain tumor microenvironments. Recently, I developed methods for tuning iron oxide nanoparticles (NPs) to generate high resolution (i.e. ~600 m) MPI images with ultra-high contrast agent mass sensitivity of less than ~550pg Fe/L. I have used MPI for three-dimensional targeted imaging of the U87 brain tumors in mice after intravenous injection of these NPs. Additionally, in separate studies, I demonstrated the feasibility of the MPI for selective magnetothermal therapy of the U87 tumors, when NPs were directly injected into tumors. In this project, I will first evaluate MPI and heat generation efficiency of the NPs at different brain depths to further identify ideal NPs design and imaging criteria for general brain tumor imaging or local magnetothermal therapy with MPI (Aim 1). Then, I will evaluate MPI for targeted 3D imaging of four different types of intracranially implanted brain tumors after intravenous injection of the nanoparticles, followed by nanoparticle biodistribution studies (Aim 2). Finally, I will use intratumoral injection of my tumor-penetrating NPs for MPI-guided magnetothermal therapy of the deep brain tumors (representative models for inoperable GBM), followed by in-depth survival and neuropathological studies (Aim 3). Iron oxide nanoparticles have been approved by FDA for several clinical applications and we hope that this method will ultimately find applications to many other types of solid tumors.

Public Health Relevance

Aggressive types of brain tumors (such as glioblastoma multiforme or GBM) respond poorly to the current treatments of surgery, radiotherapy, and chemotherapy. This research proposes to solve this challenge with a multifunctional magnetic nanoparticle agent that simultaneously delivers contrast for a novel bio-imaging technique called magnetic particle imaging (MPI), as well as magnetothermal therapy of the inoperable deep brain tumors. Sensitive and selective image-guided ablation of tumor is possible because these optimized nanoparticles only accumulate in the brain tumor tissue, and we envision that this two-armed approach may have utility with many other types of solid tumors such as pancreatic, lung and prostate.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Career Transition Award (K99)
Project #
1K99CA234208-01A1
Application #
9891731
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Radaev, Sergey
Project Start
2020-04-01
Project End
2022-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305