Aflatoxin, produced by the fungi Aspergillus flavus and Aspergillus parasiticus, is a well-known environmental carcinogen that causes mutations and ultimately leads to hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths worldwide. Chronic dietary exposure to aflatoxin B1 (AFB1), the most mutagenic aflatoxin, and chronic infections with the hepatitis B virus (HBV) or hepatitis C virus (HCV) are the two major etiological factors for the development of HCC. Nucleotide excision repair is the repair mechanism by which the bulky lesions induced by AFB1 are removed from the genome. Despite the progress in our knowledge of the AFB1-DNA adduct, the formation and removal kinetics of the bulky DNA lesion throughout the genome and the factors affecting the damage formation and repair efficiency remain elusive. Our long-term goal of this project is to better understand how the kinetics of AFB1-induced DNA damage formation and repair contributes to human hepatic mutagenesis. The overall objective of this particular proposal, which is an initial step to achieve our long-term goal, is to combine biochemistry, genetics, adductomics and computational approaches to investigate effects of histone modifications and three-dimensional (3D) genome organization on AFB1-induced DNA damage formation and repair, and to determine the correlations between AFB1-DNA adduct spectra or repair efficiencies and mutational spectra of AFB1 in human HCC. Our central hypothesis is that human hepatic mutagenesis correlates with the AFB1-induced DNA damage formation and/or repair events, which are affected by histone modifications and 3D genome organization. We propose two specific aims to test our hypothesis and accomplish the objective: 1)! Genome-wide Analysis of AFB1-induced DNA Damage Formation and Repair Kinetics as a Function of Histone Modifications and 3D Genome Organization (Aim1, K99 and R00 phase). 2) Determine the Correlations Between AFB1-DNA Adduct Spectra or Repair Efficiencies and Mutational Spectra of AFB1 in Human HCC (Aim2, R00 phase). We expect the following outcomes: Determination of the effect of histone acetylation on AFB1-DNA adducts formation and repair efficiency; determination of the effect of 3D genome organization on AFB1-DNA adducts formation and repair efficiency; identification of AFB1-induced DNA damage hot spots and repair cold spots in cancer-associated genes; determination of the correlations between AFB1-DNA adduct spectra or repair efficiencies and mutational spectra of AFB1 in human HCC. The proposed research is significant because it will give insights into development of AFB1-associated HCC, improve prevention strategies and develop better treatment for HCC.

Public Health Relevance

Human hepatocellular carcinoma is the fourth most common cause of cancer death in the world. The proposed studies will apply innovative and powerful approaches to delineate the role of aflatoxin-induced DNA damage formation and repair in hepatic mutagenesis. The outcomes of the proposed project will lead to new prevention strategies and facilitate better treatment of human hepatocellular carcinoma.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Career Transition Award (K99)
Project #
1K99ES030015-01A1
Application #
9821920
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Reinlib, Leslie J
Project Start
2019-09-06
Project End
2021-08-31
Budget Start
2019-09-06
Budget End
2020-08-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Biochemistry
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599