During each division, the cell must quickly and accurately replicate its genome. This process, however, is challenged by constant insults to DNA. DNA interstrand cross-links (ICLs) are genomic lesions that covalently link the two strands of DNA and block replication. If left unrepaired, these lesions can induce genomic instability, a hallmark of cancer. Although ICLs are generated by a variety of exogenous and endogenous agents, the structures of specific ICLs that arise spontaneously in cells are unknown. In proliferating cells, ICL repair occurs predominately in S phase. In the classic ICL repair pathway, repair requires replication fork convergence at an ICL and the cross-linked DNA strands are unhooked by nucleolytic incisions that generate a DNA double stranded break (DSB) intermediate. This DSB is then repaired by homologous recombination. Importantly, mutations in genes that function in this repair pathway cause the bone marrow failure and cancer predisposition syndrome Fanconi anemia (FA). Recently, an alternative ICL repair pathway that depends on the NEIL3 DNA glycosylase has been discovered. Like the FA pathway, the NEIL3 pathway requires replication fork convergence at an ICL. However, unlike the FA pathway, the NEIL3 pathway does not involve formation of a DSB intermediate. Instead, NEIL3 unhooks ICLs by cleaving one of the N-glycosyl bonds of the cross-linked nucleobases, generating an abasic site that can be bypassed by translesion synthesis. Unhooking by the NEIL3 pathway is therefore faster and less complicated than unhooking by the FA pathway and is the preferred ICL repair pathway for a subset of lesions. In this proposal, complementary biochemical, genetic, and analytical approaches will be used to investigate the mechanism of NEIL3-dependent ICL repair.
Aim 1 seeks to determine how replication forks activate NEIL3-dependent unhooking using Xenopus egg extracts that recapitulate ICL repair.
Aim 2 proposes to investigate how the NEIL3 and FA pathways are coordinated to allow efficient ICL repair in humans using a recently established cell line model. Finally, Aim 3 will address the question of which endogenous forms of DNA damage are targeted by ICL repair pathways through the development of a novel mass spectrometry approach to discover DNA lesions in cells. The mentored phase of this work will be undertaken at Harvard Medical School under the mentorship of Dr. Johannes Walter and an assembled advisory committee. The applicant will supplement previous training in biochemistry with additional training in cell culture and analytical mass spectrometry techniques with the goal of investigating the formation and repair of endogenous DNA lesions as the head of an independent laboratory. The applicant's goals will be facilitated by the rich experimental and career development resources of Harvard Medical School. Overall, this work has the potential to significantly impact human health. By understanding the mechanisms of ICL repair, it may be possible to design interventions that sensitize cancer cells to chemotherapy or mitigate the molecular defects that cause FA and other diseases.

Public Health Relevance

DNA interstrand cross-links (ICLs) are highly toxic DNA lesions that can induce genome instability and are thought to be potent drivers of human diseases including cancer. Investigating the repair of ICLs is critical to understanding the molecular basis for ageing, cancer, and genetic diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Career Transition Award (K99)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Janes, Daniel E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code