The application proposes a career development plan for Dr David Morrow who is currently a molecular biology trained post-doctoral fellow in the Department of Surgery, University of Rochester. The immediate goal is to develop the necessary technical and academic expertise to transition to an independent investigator with a central focus on the hemodynamic forces associated with blood flow and their regulation of signaling pathways that mediate changes in cell and tissue fate. Vascular smooth muscle cell fate decisions (i.e., whether a cell differentiates, proliferates, undergoes apoptosis or migrates) play an important role in the pathogenesis of vascular disease including atherosclerosis, intimal hyperplasia and the arterial response to injury. The Hedgehog (Hh) signaling pathway, Notch receptor-ligand interactions and Vascular endothelial growth factor (VEGF) have all been implicated in vascular morphogenesis and modeling of the embryonic vasculature. Hh signaling occurs through the interaction of the Hh protein with its receptor, patched-1 (ptd) leading to activation of a transcription factor, Gli, which induces expression of downstream target genes including Ptc1 and Gli. The discovery of angiogenic activity for Hh, preferential Ptc1 expression in vascular tissue, combined with its mechanosensitivity in vascular cells and known morphogenic functions suggest that Hh might also co-ordinate vascular cell fate changes in adult tissue. Notch receptor-ligand interactions are also a highly conserved mechanism that regulates intercellular communication and directs individual vascular cell fate during embryogenesis, and more recently in adult cells following injury. The discovery that Shh acts upstream of Notch and VEGF during arterial differentiation combined with Hh regulation of Notch target genes in a variety of cell types, further support a role for Hh-Notch interactions in controlling vascular cell fate. Given these reports in the literature and our preliminary data supporting hemodynamic regulation of both Hh and Notch signaling components in SMC, our central hypothesis is that Hh mediates flow-induced changes in SMC growth (proliferation and apoptosis) and migration via regulation of VEGF/Notch signaling.

Public Health Relevance

Understanding the molecular mechanisms regulating smooth muscle cell function and vascular remodeling should enable the design of novel and effective therapies for vascular disease. The proposed study fits well with the NIH mission to """"""""extend healthy life and reduce the burdens of illness and disability"""""""".

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Career Transition Award (K99)
Project #
5K99HL095650-02
Application #
7791306
Study Section
Special Emphasis Panel (ZHL1-CSR-Z (F2))
Program Officer
Commarato, Michael
Project Start
2009-04-01
Project End
2011-04-30
Budget Start
2010-04-01
Budget End
2011-04-30
Support Year
2
Fiscal Year
2010
Total Cost
$97,200
Indirect Cost
Name
University of Rochester
Department
Surgery
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Hatch, Ekaterina; Morrow, David; Liu, Weimin et al. (2015) Ethanol inhibits ?-secretase proteolytic activity in vascular smooth muscle cells. Alcohol Clin Exp Res 39:2115-22
Redmond, Eileen M; Hamm, Katie; Cullen, John P et al. (2013) Inhibition of patched-1 prevents injury-induced neointimal hyperplasia. Arterioscler Thromb Vasc Biol 33:1960-4
Liu, Weimin; Redmond, Eileen M; Morrow, David et al. (2011) Differential effects of daily-moderate versus weekend-binge alcohol consumption on atherosclerotic plaque development in mice. Atherosclerosis 219:448-54
Guha, Shaunta; Cullen, John P; Morrow, David et al. (2011) Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival. Basic Res Cardiol 106:773-85
Morrow, David; Cullen, John P; Liu, Weimin et al. (2010) Alcohol inhibits smooth muscle cell proliferation via regulation of the Notch signaling pathway. Arterioscler Thromb Vasc Biol 30:2597-603
Morrow, David; Cullen, John P; Liu, Weimin et al. (2009) Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A. Arterioscler Thromb Vasc Biol 29:1112-8