: Rett Syndrome (RTT) is one of the Autism Spectrum Disorders (ASDs) with a known genetic cause and represents one of the leading causes of mental retardation in females. RTT is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). The onset of RTT after normal early postnatal development and the precipitous loss of learned language and motor skills suggest a hypothesis that the clinical features of RTT result from a failure of activity-dependent neuronal development. Recently we discovered that MeCP2 suppresses Brain Derived Neurotrophic Factor (BDNF) expression in the absence of neuronal stimuli. In the presence of stimuli, MeCP2 undergoes CaMKII-mediated phosphorylation and releases repression to Bdnf. We have characterized a phosphorylation site (S421) on MeCP2 that selectively senses neuronal activity to control Bdnf transcription, modulate dendritic outgrowth and spine maturation. Our findings challenged the canonical view of MeCP2 as a global transcriptional represser and implicated MeCP2 in the molecular program controlling experience-dependent neuronal development. However, it is not clear how phosphorylation of S421 controls the function of MeCP2. In addition, developing an animal model where activity-dependent phosphorylation of MeCP2 is disrupted will provide the ultimate tool to address the role of MeCP2 in neuronal development. Thus, we plan to use biochemical, genetic, imaging, and molecular biology techniques to address two specific aims: 1) To characterize the molecular mechanisms underlying activity-dependent regulation of gene expression by MeCP2. 2) To test the in vivo contribution of activity dependent MeCP2 phosphorylation for nervous system function by generation of a MeCP2 S421A knock-in mouse model. We will initiate our aims during the mentored phase and I will carry on the characterization during the independent phase of this award. I plan to establish an independent research program focused on the biology of neurological diseases such as RTT and ASDs in the near future. It is our hope that the proposed experiments will provide a better understanding of MeCP2 function, give insight into the mechanisms of activity-dependent gene expression and neuronal development, and provide new opportunities for the development of therapeutic strategies to alleviate RTT pathology. ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Career Transition Award (K99)
Project #
1K99NS058391-01
Application #
7243765
Study Section
Special Emphasis Panel (ZNS1-SRB-M (41))
Program Officer
Mamounas, Laura
Project Start
2007-04-01
Project End
2009-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
1
Fiscal Year
2007
Total Cost
$86,616
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Bissonnette, J M; Schaevitz, L R; Knopp, S J et al. (2014) Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 267:166-76
Zhao, Ying-Tao; Goffin, Darren; Johnson, Brian S et al. (2013) Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol Dis 59:257-66
Wang, I-Ting Judy; Allen, Megan; Goffin, Darren et al. (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 109:21516-21
Cohen, Sonia; Gabel, Harrison W; Hemberg, Martin et al. (2011) Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72:72-85
Bracaglia, Giorgia; Conca, Barbara; Bergo, Anna et al. (2009) Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep 10:1327-33
Wood, Lydia; Gray, Noah W; Zhou, Zhaolan et al. (2009) Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci 29:12440-8
Cukier, Holly N; Perez, Alma M; Collins, Ann L et al. (2008) Genetic modifiers of MeCP2 function in Drosophila. PLoS Genet 4:e1000179
Cohen, Sonia; Zhou, Zhaolan; Greenberg, Michael E (2008) Medicine. Activating a repressor. Science 320:1172-3