My long term goal is to elucidate the neural mechanism underlying reaching behavior and apply this scientific knowledge to a neural prosthesis to restore reaching for amputees and paralyzed patients. The posterior parietal cortex (PPC) and dorsal premotor cortex (PMd) are anatomical nodes located in the parieto-frontal network implicated in visually guided reaching. Recently, it was demonstrated that an abstract reaching plan is represented in these areas and that the reaching goal can be read out from both areas before the movement starts. However, it is still unclear what the respective roles of PPC and PMd are in visually guided reaching and how they are functionally interconnected, answers to which could help a prosthesis designer to determine from where and how to decode reaching intentions. To this end, I aim to investigate these areas with the following specific hypothesis: for visually guided reaching, the medial intraparietal area (MIP) in PPC computes a default reach plan, i.e., reaching for a salient object, upon arrival of the visual stimulus information, and this plan is passed to PMd which selects an action between the default reach plan formed in MIP and a non-default plan formed in the frontal area using imposed cognitive rules, e.g., 'green means go and red means stop'. Once PMd resolves the action selection and forms an actual reach plan, this plan is fed back to MIP which then reflects the actual impending reach plan to serve eye-hand coordination and online control of the reaching movement. My hypothesis is based on the following observations. First, MIP neurons represent the location of an eccentric visual stimulus for a brief period upon stimulus onset. Second, inactivation of PMd induces selective deficits in a task requiring action selection based on cognitive rules. Third, MIP neurons represent the location of the upcoming reach target instead of the location of the salient stimulus as time approaches the movement onset. One clear experimental prediction from my hypothesis is that a default reach plan (bottom-up information flow) will be detected in MIP first and a non-default reach plan (top-down information flow) will be detected in PMd first. I will test this prediction by comparing the time at which each plan arises in MIP and PMd. Another prediction is that lesion of MIP will disturb eye-hand coordination and online control of reaching movements. During the mentored phase, I will test the second prediction using a reversible inactivation of MIP. During the independent investigator phase, I will expand the focus to include PMd and test the first prediction using a multi-areal recording under an intact condition. In addition, to further confirm the directional influence between MIP and PMd, the altered neural response in one area by the inactivation of the other will be examined.

Public Health Relevance

The scientific knowledge acquired from this study will not only advance our understanding of the brain but also provide essential information for neural prosthetic applications, e.g., the ideal target brain area to implant the prosthetics and the optimal signal processing scheme to decode the intention of reaching. Considering the importance of reaching in our daily activities, the successful application of the acquired knowledge to a neural prosthesis will bring a significant improvement to the quality of life for the patients who lost reaching abilities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Career Transition Award (K99)
Project #
5K99NS062894-02
Application #
8043540
Study Section
Special Emphasis Panel (ZNS1-SRB-M (73))
Program Officer
Gnadt, James W
Project Start
2010-04-01
Project End
2012-06-30
Budget Start
2011-04-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$90,000
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Hwang, Eun Jung; Hauschild, Markus; Wilke, Melanie et al. (2014) Spatial and temporal eye-hand coordination relies on the parietal reach region. J Neurosci 34:12884-92
Hwang, Eun Jung; Bailey, Paul M; Andersen, Richard A (2013) Volitional control of neural activity relies on the natural motor repertoire. Curr Biol 23:353-61
Hwang, Eun Jung (2013) The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans. Front Neural Circuits 7:121
Hwang, Eun Jung; Andersen, Richard A (2013) The utility of multichannel local field potentials for brain-machine interfaces. J Neural Eng 10:046005
Hwang, Eun Jung; Andersen, Richard A (2012) Spiking and LFP activity in PRR during symbolically instructed reaches. J Neurophysiol 107:836-49
Hwang, Eun Jung; Hauschild, Markus; Wilke, Melanie et al. (2012) Inactivation of the parietal reach region causes optic ataxia, impairing reaches but not saccades. Neuron 76:1021-9
Hwang, Eun Jung; Andersen, Richard A (2011) Effects of visual stimulation on LFPs, spikes, and LFP-spike relations in PRR. J Neurophysiol 105:1850-60