The ERK/MAPK intracellular signal transduction cascade is activated by extracellular stimuli that play important roles in nervous system development and plasticity. Genetic disruption of ERK/MAPK signaling has been implicated in neurodevelopmental syndromes, yet our understanding of the functions of this pathway in the developing brain is rudimentary. This career development proposal seeks to define the precise role of ERK/MAPK in inhibitory neural circuits that are thought to be disrupted in neurodevelopmental syndromes. During the mentored phase, the precise functions of ERK/MAPK signaling in cortical inhibitory interneuron development will be established (Aim 1). Definitive mouse models for conditional gain and loss of ERK/MAPK signaling will be generated and studied with advanced imaging and electrophysiological techniques. Importantly, whether damaged inhibitory interneurons can be repaired following the normalization of aberrant ERK/MAPK activity in adult mice will be tested during both the mentored and independent phase (Aim 2). Finally, the global changes in gene expression that contribute to ERK/MAPK effects will be assessed specifically in inhibitory interneurons in vivo during the independent phase (Aim 3). These data will be essential for understanding the development and reversal of neural circuit defects in human syndromes resulting from mutations in ERK/MAPK signaling components. My long term goal is to obtain an academic position and study mechanisms of neural circuit dysfunction and restoration in neurodevelopmental disorders, particularly those linked to ERK/MAPK dysfunction. This line of research will require training in electrophysiology and cortical development. UNC is an outstanding institution to complete the mentored phase of this application, primarily due to the wealth of basic science and clinical researchers performing interdisciplinary research on numerous neurodevelopmental disorders. In addition to Dr. Snider's extensive experience and outstanding leadership, a number of exceptional scientists at UNC will provide electrophysiological training, formal class work, and scientific guidance. Relationships with outstanding researchers at other institutions have been established that will contribute to both phases of this proposal. Overall, the training experiences to be supported by this proposal will be critical for me to obtain a faculty appointment and establish an independent laboratory.

Public Health Relevance

Mutations in the ERK/MAPK intracellular signaling cascade are an important cause of a subset of human syndromes that exhibit neurodevelopmental delay and learning impairment. The execution of this proposal will be of interest to clinical disciplines that are exploring ERK1/2 as a therapeutic target or seeking to understand and reverse the pathology of developmental syndromes resulting from mutations in ERK/MAPK signaling components.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Career Transition Award (K99)
Project #
5K99NS076661-02
Application #
8338802
Study Section
NST-2 Subcommittee (NST)
Program Officer
Mamounas, Laura
Project Start
2011-09-30
Project End
2013-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$86,994
Indirect Cost
$6,444
Name
University of North Carolina Chapel Hill
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed et al. (2016) Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. Elife 5:
Yi, Jason J; Berrios, Janet; Newbern, Jason M et al. (2015) An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A. Cell 162:795-807
Maynard, Thomas M; Gopalakrishna, Deepak; Meechan, Daniel W et al. (2013) 22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Hum Mol Genet 22:300-12
Li, Xiaoyan; Newbern, Jason M; Wu, Yaohong et al. (2012) MEK Is a Key Regulator of Gliogenesis in the Developing Brain. Neuron 75:1035-50
Newbern, Jason M; Snider, William D (2012) Bers-ERK Schwann cells coordinate nerve regeneration. Neuron 73:623-6